
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-11-17

A Performance Evaluation of Dynamic Transport Switching for A Performance Evaluation of Dynamic Transport Switching for

Multi-Transport Devices Multi-Transport Devices

Lei Wang
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Wang, Lei, "A Performance Evaluation of Dynamic Transport Switching for Multi-Transport Devices"
(2006). Theses and Dissertations. 824.
https://scholarsarchive.byu.edu/etd/824

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/824?utm_source=scholarsarchive.byu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

A PERFORMANCE EVALUATION OF DYNAMIC TRANSPORT

SWITCHING FOR MULTI-TRANSPORT DEVICES

by

Lei Wang

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

December 2006

www.manaraa.com

www.manaraa.com

Copyright © 2006 Lei Wang

All Rights Reserved

www.manaraa.com

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Lei Wang

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Charles D. Knutson, Chair

Date Daniel M.A. Zappala

Date Yiu-Kai Dennis Ng

www.manaraa.com

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Lei Wang in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date Charles D. Knutson
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean,
College of Physical and Mathematical Sciences

www.manaraa.com

www.manaraa.com

ABSTRACT

A PERFORMANCE EVALUATION OF DYNAMIC TRANSPORT SWITCHING FOR

MULTI-TRANSPORT DEVICES

Lei Wang

Department of Computer Science

Master of Science

Multi-transport devices are becoming more common, but sophisticated software is

needed to fully realize the advantages of these devices. In this paper, we examine the

performance of dynamic transport switching, which selectsthe best available transport for

communication between two devices. We simulate transport switching within the Qual-

ity of Transport (QoT) architecture and show that it can effectively mitigate the effects

of congestion and interference for connections between twomulti-transport devices. We

then evaluate dynamic transport switching overhead to characterize its effect on application

throughput. Based on these insights, we identify several limitations of the QoT architecture

and present solutions to improve performance.

www.manaraa.com

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my wonderful wife, Qiuyi, for her understanding, great sup-

port, and especially the fantastic cooking through this long process.

To my advisor, Dr. Knutson, thank you for the patient and insightful help on my

research. It’s hard to believe how much I have improved underyour instruction over the

past three years. Thank you for loving me like your own child.I feel so lucky to have you

as my advisor.

To Dr. Zappala, thank you for pointing out an efficient and effective direction on

my research when I feel so frustrated. Thank you for your precious advice on my thesis.

Finally, I thank Manoj for helping me through the tedious anddesperate learning

curve of NS-2. It feels fantastic when I can do seriously "bad" things to NS-2. It seems that

all those painful efforts are finally paid off.

www.manaraa.com

www.manaraa.com

Contents

Acknowledgments vi

List of Figures xvii

1 Introduction 1

2 Related Work 5

2.1 Infrastructure-based transport switching 5

2.2 Ad hoc transport switching .. 6

3 Heterogeneous Ad Hoc Networking with QoT 9

4 Transport Switching in NS-2 13

4.1 Heterogeneous nodes . 13

4.2 Dynamic transport switching .. . 14

4.3 Modifications to TCP . 15

5 Multi-Transport Heterogeneity and Dynamic Transport Switching 17

5.1 Avoiding collisions .17

5.2 Avoiding interference .. 20

6 Transport Availability Query Overhead 23

vii

www.manaraa.com

6.1 Query overhead between two communicating nodes 23

6.2 Query Overhead From Multiple Communicating Nodes 25

7 Conclusions and Future Work 29

A Heterogeneous Nodes and Dynamic Transport Switching in NS-2 31

A.1 File Layout . 31

A.2 Simulations with Heterogeneous Nodes in NS-2 33

B Heterogeneous Node Reference Manual 37

B.1 Class Hierarchy . 37

B.2 Class List . 39

B.3 act_trans_list Struct Reference 41

B.3.1 Detailed Description . 41

B.3.2 Member Data Documentation . 41

B.4 app_data Struct Reference .. 43

B.4.1 Detailed Description . 43

B.4.2 Member Data Documentation . 43

B.5 CallBack Struct Reference .. 46

B.5.1 Detailed Description . 47

B.5.2 Member Data Documentation . 47

B.6 DevTabEntry Class Reference .. 49

B.6.1 Detailed Description . 54

B.6.2 Constructor & Destructor Documentation 54

B.6.3 Member Function Documentation 55

viii

www.manaraa.com

B.6.4 Friends And Related Function Documentation 61

B.6.5 Member Data Documentation . 61

B.7 p_consumption Struct Reference 65

B.7.1 Detailed Description . 65

B.7.2 Member Data Documentation . 65

B.8 prio_info Struct Reference .. . 67

B.8.1 Detailed Description . 67

B.8.2 Member Data Documentation . 67

B.9 qot_con_acc Struct Reference .. . 69

B.9.1 Detailed Description . 69

B.10 qot_con_rej Struct Reference 70

B.10.1 Detailed Description . 70

B.10.2 Member Data Documentation . 70

B.11 qot_con_req Struct Reference 71

B.11.1 Detailed Description . 71

B.11.2 Member Data Documentation . 71

B.12 qot_data_snd Struct Reference 72

B.12.1 Detailed Description . 72

B.12.2 Member Data Documentation . 72

B.13 qot_data_sync_pnt Struct Reference 74

B.13.1 Detailed Description . 74

B.13.2 Member Data Documentation . 74

B.14 qot_data_sync_req Struct Reference 75

B.14.1 Detailed Description . 75

ix

www.manaraa.com

B.15 qot_discon_acc Struct Reference 76

B.15.1 Detailed Description . 76

B.16 qot_discon_req Struct Reference 77

B.16.1 Detailed Description . 77

B.17 qot_rem_acc Struct Reference 78

B.17.1 Detailed Description . 78

B.17.2 Member Data Documentation . 78

B.18 qot_rem_rej Struct Reference 79

B.18.1 Detailed Description . 79

B.19 qot_rem_req Struct Reference 80

B.19.1 Detailed Description . 80

B.19.2 Member Data Documentation . 80

B.20 qot_stack Union Reference .. . 81

B.20.1 Detailed Description . 81

B.20.2 Member Data Documentation . 81

B.21 qot_swh_acc Struct Reference 83

B.21.1 Detailed Description . 83

B.21.2 Member Data Documentation . 83

B.22 qot_swh_qry Struct Reference 84

B.22.1 Detailed Description . 84

B.22.2 Member Data Documentation . 84

B.23 qot_swh_qry_rep Struct Reference 85

B.23.1 Detailed Description . 85

B.23.2 Member Data Documentation . 85

x

www.manaraa.com

B.24 qot_swh_rej Struct Reference 86

B.24.1 Detailed Description . 86

B.24.2 Member Data Documentation . 86

B.25 qot_swh_req Struct Reference 87

B.25.1 Detailed Description . 87

B.25.2 Member Data Documentation . 87

B.26 qot_trans_info_qry Struct Reference 88

B.26.1 Detailed Description . 88

B.26.2 Member Data Documentation . 88

B.27 qot_trans_info_qry_rep Struct Reference 90

B.27.1 Detailed Description . 90

B.27.2 Member Data Documentation . 90

B.28 qot_trans_qry Struct Reference 92

B.28.1 Detailed Description . 92

B.29 qot_trans_qry_rep Struct Reference 93

B.29.1 Detailed Description . 93

B.29.2 Member Data Documentation . 93

B.30 QoTBrain Class Reference .. 94

B.30.1 Detailed Description . 95

B.30.2 Constructor & Destructor Documentation 95

B.30.3 Member Function Documentation95

B.30.4 Member Data Documentation . 97

B.31 QoTNode Class Reference .98

B.31.1 Detailed Description . 104

xi

www.manaraa.com

B.31.2 Constructor & Destructor Documentation 104

B.31.3 Member Function Documentation105

B.31.4 Friends And Related Function Documentation 116

B.31.5 Member Data Documentation . 118

B.32 QoTOutQueue Class Reference .. . 121

B.32.1 Detailed Description . 124

B.32.2 Constructor & Destructor Documentation 124

B.32.3 Member Function Documentation124

B.32.4 Friends And Related Function Documentation 128

B.32.5 Member Data Documentation . 128

B.33 QoTPacket Union Reference .. 130

B.33.1 Detailed Description . 132

B.33.2 Member Data Documentation . 132

B.34 QoTQueue Class Reference .. 136

B.34.1 Detailed Description . 137

B.34.2 Constructor & Destructor Documentation 138

B.34.3 Member Function Documentation138

B.34.4 Member Data Documentation . 139

B.35 QTPM Class Reference . 141

B.35.1 Detailed Description . 142

B.35.2 Constructor & Destructor Documentation 142

B.35.3 Member Function Documentation142

B.35.4 Member Data Documentation . 143

B.36 RDT Class Reference . 145

xii

www.manaraa.com

B.36.1 Detailed Description . 146

B.36.2 Constructor & Destructor Documentation 147

B.36.3 Member Function Documentation147

B.36.4 Friends And Related Function Documentation 149

B.36.5 Member Data Documentation . 149

B.37 sharedT Struct Reference .. . 150

B.37.1 Detailed Description . 152

B.37.2 Member Function Documentation152

B.37.3 Member Data Documentation . 153

B.38 stack_bt Struct Reference 157

B.38.1 Detailed Description . 157

B.38.2 Member Data Documentation . 157

B.39 stack_wifi Struct Reference 159

B.39.1 Detailed Description . 159

B.39.2 Member Data Documentation . 159

B.40 stack_wusb Struct Reference 161

B.40.1 Detailed Description . 161

B.40.2 Member Data Documentation . 161

B.41 stack_zigbee Struct Reference 163

B.41.1 Detailed Description . 163

B.41.2 Member Data Documentation . 163

B.42 StatTimer Class Reference .. . 165

B.42.1 Detailed Description . 166

B.42.2 Constructor & Destructor Documentation 167

xiii

www.manaraa.com

B.42.3 Member Function Documentation167

B.42.4 Friends And Related Function Documentation 167

B.42.5 Member Data Documentation . 168

B.43 TAM Class Reference . 170

B.43.1 Detailed Description . 171

B.43.2 Constructor & Destructor Documentation 171

B.43.3 Member Function Documentation171

B.43.4 Member Data Documentation . 172

B.44 throughput Struct Reference 174

B.44.1 Detailed Description . 174

B.44.2 Member Data Documentation . 174

B.45 trans_info Struct Reference 176

B.45.1 Detailed Description . 176

B.45.2 Member Data Documentation . 176

B.46 transport_stack Struct Reference 178

B.46.1 Detailed Description . 179

B.46.2 Member Data Documentation . 179

B.47 TransportQueryTimer Class Reference 182

B.47.1 Detailed Description . 183

B.47.2 Constructor & Destructor Documentation 183

B.47.3 Member Function Documentation183

B.47.4 Member Data Documentation . 184

B.48 /ns-2.28/qot/hdr.h File Reference 186

B.48.1 Enumeration Type Documentation 189

xiv

www.manaraa.com

B.49 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h File Reference 192

B.49.1 Define Documentation . 196

B.49.2 Enumeration Type Documentation 197

Bibliography 200

xv

www.manaraa.com

xvi

www.manaraa.com

List of Figures

1.1 Mobile Ad Hoc Network composed of multi-transport nodes. 2

3.1 QoT in OSI reference protocol stack 10

3.2 Data exchange using QoT . 10

4.1 Heterogeneous Node in NS-2 .14

5.1 Use Transport Switching to Avoid Collisions 18

5.2 Avoiding Collisions .18

5.3 Use Transport Switching to Avoid Interference 20

5.4 Avoiding Interference .. 21

6.1 Query Overhead Between Multiple Communicating Nodes 24

6.2 Query Overhead Between Two Communicating Nodes 26

6.3 Query Overhead between Multiple Communicating Nodes 26

6.4 Query Overhead between Multiple Communicating Nodes 27

A.1 QoT Architecture . 32

xvii

www.manaraa.com

www.manaraa.com

Chapter 1

Introduction

Mobile devices equipped with multiple wireless networkinginterfaces are becom-

ing increasingly common. A mobile device, such as a PersonalDigital Assistant (PDA),

may support cellular network access as well as ad hoc connections with other mobile de-

vices through built-in Bluetooth and infrared ports. With such intra-device multi-transport1

heterogeneity, devices can potentially receive and transmit signals via several wireless net-

working interfaces.

Multi-transport devices can be used to improve user experience in many ways. One

example could be facilitating photo transfer between a user’s cell phone and laptop com-

puter. Both the cell phone and laptop computer support networking methods via the Blue-

tooth and WiFi interfaces. The user may initiate the photo transfer over the WiFi interface.

If the WiFi link becomes severely interfered or congested, the cell phone automatically and

intelligently switches the photo transfer to Bluetooth to improve transmission quality.

Multi-transport devices can also be utilized in mesh networking. Ad hoc networks

have historically been comprised of devices that support a single transport mechanism.

Building an ad hoc network using multi-transport devices can significantly expand its capa-

bility. As an example, Fig. 1.1 shows a mobile ad hoc network composed of multi-transport

nodes. In this example, two nodes should be able to communicate through whatever trans-

ports are available. Each hop on a path may potentially utilize a different transport, with

1By “transport" we refer broadly to traditional stovepipe communication architectures interfaced primarily
via the transport layer of the protocol stack. Hence, when weuse the term “transport," we refer to all layers
from the transport layer to the physical layer inclusive. Asan example, we would refer to Bluetooth and WiFi
as separate “transports."

1

www.manaraa.com

IEEE 802.11b

Bluetooth

Fast Infrared

S

D

N1

N2

N3

N4

N5

IEEE 802.11b

Bluetooth

Fast Infrared

IEEE 802.11b

Bluetooth

Fast InfraredFast Infrared

SS

DD

N1N1

N2N2

N3N3

N4N4

N5N5

Figure 1.1: Mobile Ad Hoc Network composed of multi-transport nodes

the source node dynamically choosing between available paths based on observable per-

formance. As illustrated in Fig. 1.1, nodeS is communicating with nodeD. For this

communication, there are potential paths, with one possibility of using Bluetooth fromS

to N2, WiFi from N2 to N5, and Fast Infrared (FIR) fromN5 to D.

Whether for point-to-point or mesh networking, a needed feature is the ability to

dynamically choose the best available transport at each hop. A particular hop on a path

may decide to switch transports for any of the following purposes:

• Preserve Connectivity.Nodes can maintain robust connectivity by utilizing dynamic

transport switching. AssumeS communicates withN3 via FIR. At a later time,N3

moves away fromS and the distance between them is beyond the range of FIR. Node

S can seamlessly switch the data communication from FIR to Bluetooth to maintain

the connection withN3.

• Improve Link Quality. Nodes can provide better communication link quality by

means of dynamic transport switching. For example, nodeN5 and nodeD both

use WiFi and FIR. AssumeN5 communicates withD via WiFi. This interface could

become congested by ambient IEEE 802.11b traffic or interference from other wire-

less sources operating in the 2.4 GHz ISM band. NodeN5 can avoid such congestion

2

www.manaraa.com

and interference by switching the active transport from WiFi to FIR.

• Conserve Power.Nodes can achieve longer battery life by using interfaces that con-

sume less power. Assume nodeS switches the active transport from FIR to Bluetooth

to maintain a connection with nodeN3. ShouldN3 move within the range of FIR,S

could switch the data communication back to FIR to conserve power.

Despite the benefits demonstrated above, dynamic transportswitching mechanism may also

incur overhead to data transfer. For multi-transport devices, the networking interface that is

not being used is normally powered off to preserve power. To determine the availability of

remote devices via a particular transport, a device must power on the interface periodically

and query for potential connectivity with remote devices. Both of these operations can in-

terfere with data transmission. To lay a foundation for further transport switching protocol

design, we need to assess the impact of this overhead on application performance.

In this paper, we use simulations to study the performance ofdynamic transport

switching. We first demonstrate that dynamic transport switching can effectively mitigate

the negative effects of congestion and interference for single-hop connections, which form

the basis for multi-hop connections in ad hoc networks. We then evaluate the potential

overhead of dynamic transport switching for point-to-point communication. The overhead

is evaluated first in scenarios of only a single pair of nodes and then when multiple pair of

nodes are communicating. We also address two performance problems that originate from

data buffering within the QoT architecture. We identify their impact on data throughput

and present solutions to improve performance.

3

www.manaraa.com

4

www.manaraa.com

Chapter 2

Related Work

Prior research on dynamic transport switching in heterogeneous wireless environ-

ments has typically taken one of two forms: Infrastructure-based or point-to-point ad hoc.

2.1 Infrastructure-based transport switching

Infrastructure-based transport switching involves passively listening to beacon mes-

sages from a wireless access point to ascertain the presenceof a wireless network. This is

only applicable to infrastructure-based wireless networking, and is not suitable for either

peer-to-peer or ad hoc communication.

The BARWAN project at the University of California at Berkeley proposes the con-

cept of a vertical handoff system that allows users to roam between cells in wireless overlay

networks [1]. In a vertical handoff system, all network interfaces are turned off by default

with the exception of the overlay immediately below the current overlay. This overlay

wakes up periodically to listen to beacons on the lower interface for a short time. The

BARWAN mechanism is based on the assumption that the reason for traffic switching is

to simply roam into or out of the service coverage of wirelessnetworks. This assumption

may not hold in a more flexible usage scenario where traffic switching may also happen in

order to preserve power or improve link quality.

Research at Georgia Institute of Technology uses a similar concept of the vertical

handoff and proposes a TCP scheme for a seamless vertical handoff between WLAN and

3G cellular networks [2]. In their performance evaluation,the proposed scheme avoids

5

www.manaraa.com

packet loss during the handoff and reaches a stable condition rapidly.

The MosquitoNet project at Stanford University implementsa mobile IP system

that supports seamless switching between different networks and communication devices

[3]. The measurements of their implementation show that theinherent overhead to switch

networks is insignificant compared to the time required to bring up a new communication

device.

The capability of dynamic transport switching has also drawn attention from indus-

try researchers. The WLAN-GPRS integration project at Motorola aims to provide users

ubiquitous data services and very high data rates in hotspotlocations [4]. They discuss

the general aspects of integrating WLANs and cellular data networks and examine the

generic internetworking architectures. The IOTA project at Lucent focuses on providing

users seamless roaming across 802.11 and 3G networks [5].

2.2 Ad hoc transport switching

In ad hoc transport switching, a node must actively probe thesupported wireless

networking interfaces to determine their availability. The following projects present dy-

namic transport switching mechanisms that may be suitable for either peer-to-peer or ad

hoc communication.

The WiOptiMo project proposes an application layer solution to facilitate seamless

handover between wireless networks, such as Bluetooth, 802.11x local area networks and

3G cellular networks [6]. This solution is designed for pairs of communicating devices

and can perform either infrastructure-based or ad hoc transport switching. In their per-

formance evaluation, the authors show that the throughput is not largely affected by the

wireless network handover; in the worst case the proposed switching mechanism reduces

the throughput by less than 2%. However, the overhead due to periodic transport availabil-

ity queries are not evaluated. Furthermore, the transportsused in their experiments, GPRS

and WiFi, do not share an overlapping frequency band, so theydo not interfere with each

other. Transports with overlapping frequencies may severely interfere with each other, and

thereby generate significant overhead to data communication.

6

www.manaraa.com

IEEE 802.21 is an emerging standard for Media Independent Handover (MIH)

services [7] [8]. This standard proposes a link layer solution to optimize handovers be-

tween heterogeneous networking technologies. It supportsalgorithms enabling seamless

handover between networks of IEEE 802 series networks, suchas WiFi, Bluetooth and

WiMAX, as well as between IEEE 802 networks and non-802 networks, such as cellular

and wired networks. In IEEE 802.21, a mobile terminal determines the presence of a wire-

less network through reception of either a beacon or a response to a probe. No work on

performance evaluation of IEEE 802.21 has yet been published.

The Quality of Transport (QoT) project aims to facilitate adhoc data exchange

between two mobile devices by means of intelligent, dynamictransport switching [9]. This

project also utilizes the characteristic of devices with multiple networking interfaces to

substantially reduce the cost of Bluetooth device discovery and connection establishment

phases [10], and to maximize data throughput through inverse multiplexing [11].

Although all three projects described above are potential dynamic transport switch-

ing mechanisms that may be used for peer-to-peer or ad hoc communication, we use QoT as

an example dynamic transport switching mechanism to conduct our research. The WiOp-

tiMo project assumes common support to TCP/IP protocol stack, and hence narrows its

usage models. IEEE 802.21 requires significant modifications to current protocols at the

data link layer, and the technical efforts that are requiredto accomplish this are not clear at

this stage.

7

www.manaraa.com

8

www.manaraa.com

Chapter 3

Heterogeneous Ad Hoc Networking with QoT

QoT is a protocol layer residing between the session layer and the transport layer

in the OSI reference model. As illustrated in Figure 3.1, it works as a proxy layer between

applications and underlying reliable connection mechanisms. QoT bridges the upper Trans-

port Proxy Module (TPM) and the lower Transport AbstractionModule (TAM), which are

specific to each supported transport [9]. The TPM appears to asession layer as if it were an

interface to a specific transport, even though the transportthat actually transfers user data

may change during the communication. The TAM interacts withthe transport layer as if it

were an arbitrary (but indeterminate) session protocol.

QoT is designed to exploit intra-device heterogeneity to optimize communication

quality by means of dynamic transport switching. Figure 3.2illustrates a QoT-enabled data

exchange between two devices using session protocolS1. The two devices each support

three transports, two of them common (T2 andT3). In this figure, the highest quality link

is provided byT3, so QoT routes the traffic of session protocolS1 via transport protocol

T3 (in dashed lines). Should link conditions change such thatT2 provides a more desirable

link, QoT would switch the underlying transport toT2 (in solid lines) without affecting the

data exchange.

QoT-enabled multi-transport nodes conduct periodic queries to determine the status

of networking interfaces in order to facilitate dynamic transport switching. This is because

pairs of communicating nodes cannot rely on beacons from infrastructure networks to as-

certain each other’s presence.

9

www.manaraa.com

Figure 3.1: QoT in OSI reference protocol stack

Device A

S1 S2 S3 S3 S1

T1 T2 T3 T4 T2 T3

Device B

Figure 3.2: Data exchange using QoT

10

www.manaraa.com

When communicating with a peer, the QoT layer on the sending node buffers pack-

ets from the session layer and assigns sequence numbers to them before sending them down

to the active transport layer protocol. When switching transports, the QoT layer on the

sending node must know where to resume the data communication when performing trans-

port switch. Once the buffer is full, the QoT layer sends a data synchronization message

to the corresponding QoT layer on the receiving node, which responds with the sequence

number of the packet most recently received. When the bufferis full, QoT cannot handle

further packets from the session layer. Upon receiving the synchronization response, the

QoT layer releases packets that are acknowledged in the buffer and continues receiving

packets from the session layer.

11

www.manaraa.com

12

www.manaraa.com

Chapter 4

Transport Switching in NS-2

In order to evaluate the impact of dynamic transport switching on point-to-point

data communication, we made three significant modificationsto Network Simulator 2 (ns-

2). First, we implemented intra-device heterogeneity thatpermits individual nodes to sup-

port multiple transport mechanisms. Second, we implemented a dynamic transport switch-

ing mechanism, modeled after QoT, that permits data communication between two nodes

to seamlessly continue during a transport switch. Finally,we made some modifications to

the ns-2 implementation of TCP so that it sends actual packets.

4.1 Heterogeneous nodes

As Figure 4.1 shows, we facilitate multi-transport nodes inns-2 by subsuming or-

dinary homogeneous nodes (such as WiFi, Bluetooth and ZigBee) within a newly-defined

heterogeneous node structure. Compared to a homogeneous node, a heterogeneous node

is a “virtual" node in the sense of not possessing traditional protocol stack layers such as

channel layer, physical layer, data link layer, routing layer and transport layer. Instead, a

heterogeneous node may include one or multiple ns-2 homogeneous nodes in order to main-

tain the appearance of a single heterogeneous node. Finally, traffic generators, such as File

Transfer Protocol (FTP) or Constant Bit Rate (CBR), are associated with a heterogeneous

node rather than being linked to astatictransport agent.

Homogeneous nodes may co-exist with heterogeneous nodes inthe same simula-

tion. Heterogeneous nodes can communicate with either heterogeneous or homogeneous

13

www.manaraa.com

WiFi BT ZigBee

Dynamic Transport Switching

Heterogeneous Node

Traffic Generator

Homogeneous NodeWiFi BT ZigBee

Dynamic Transport Switching

Heterogeneous Node

Traffic Generator

Homogeneous Node

Figure 4.1: Heterogeneous Node in NS-2

nodes, but cannot perform transport switching while communicating with homogeneous

nodes.

4.2 Dynamic transport switching

Upon receiving packets from a traffic generator, the transport switching mechanism

of a heterogeneous node determines which transport is to be used for data communication.

As shown in Figure 4.1, the transports of a heterogeneous node are linked to its transport

switching mechanism. Since the transport being used for data communication may change,

a heterogeneous node must know the address and port number ofthe active transport in the

communicating node. In the connection establishment phase, two communicating nodes

exchange information about the address and port number of their transports. They then

negotiate to determine the transport that is to be used for data communication. When

sending data packets, the transport switching mechanism ofthe sending node informs the

chosen transport of the address and port number of the corresponding transport on the

remote side to which packets are sent.

14

www.manaraa.com

The link quality may change over time in mobile ad hoc networks. In order to know

if a transport is available and has the quality needed for an impending transport switch, het-

erogeneous nodes conduct periodic transport availabilityqueries on each transport shared

with the remote node. These queries gather measurements about link quality, and QoT

can then make intelligent decisions concerning the “best" transport on which to transmit

packets.

4.3 Modifications to TCP

In order to properly test transport switching, TCP agents onboth the sending and

receiving sides of a communication must send actual packets. This is because the trans-

port switching mechanisms on both sides must communicate with each other when they

establish a connection and conduct transport switching.

Current TCP implementations in ns-2 don’t transmit actual packets, but instead

record the size of the packets being transmitted and ignore actual data. We modified

the Agent/TCP/Fulltcp implementation to be able to transmit packets of transport

switching mechanisms in our project.

Current TCP implementations in ns-2 also don’t retransmit actual packets, but

rather record the sequence number of the packets that need tobe retransmitted. In or-

der to facilitate potential packet retransmissions, we also implemented send buffers in the

TCP agent.

15

www.manaraa.com

16

www.manaraa.com

Chapter 5

Multi-Transport Heterogeneity and Dynamic Transport Swit ching

In this section we present simulation results utilizing thedynamic transport switch-

ing mechanism of multi-transport nodes to avoid collisionsand interference among wireless

technologies. All the data are average values from the results of five repeated simulations.

5.1 Avoiding collisions

In high density ad hoc networks, collisions between signalsof devices that are com-

municating with each other via a wireless technology may significantly affect data through-

put. Heterogeneous nodes are able to mitigate the potentially negative effects of collisions

by intelligently switching data communication to less congested transports.

In our simulation, a pair of heterogeneous nodes, each supporting WiFi and Blue-

tooth, communicate with each other at a distance of 5 meters.As shown in Fig. 5.1, four

additional pairs of homogeneous nodes are created to communicate with each other through

WiFi. All the heterogeneous nodes and homogeneous nodes arewithin WiFi range of each

other so all nodes could contend for the shared wireless media when all of them use WiFi

to transmit signals. All nodes remain static during the lifetime of simulation.

An FTP traffic flow starts from node 1 to node 2 at second 1, and the connection is

established over WiFi. At second 8, four FTP sessions start at the four homogeneous node

pairs. The two heterogeneous nodes switch the active transport from WiFi to Bluetooth at

second 14. The simulation ends at second 20. The simulation result is shown in Fig. 5.2.

Fig. 5.2 represent data throughput over time collected at the QoT layer of node 2.

17

www.manaraa.com

1 2

5m

50m

10m

10m

10m

WiFi connection

Bluetooth connection

Figure 5.1: Use Transport Switching to Avoid Collisions

Use t r a nspor t switching to a v oid collisions

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19

Tim e (se conds)

T
h

ro
u

g
h

p
u

t
(
K

B
/

s
)

without sync request

with sync request

Figure 5.2: Avoiding Collisions

18

www.manaraa.com

Our simulation results show that transport switching can help a connection achieve

greater throughput by switching away from a transport that suffers a high collision rate.

Once the homogeneous nodes start data traffic at second 8, WiFi becomes crowded. Colli-

sion occurs when more than one node requests to send packets at a same time. The Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism of the WiFi Me-

dia Access Control (MAC) layer backs off for a random time period before trying to send

packets again. Such backoffs degrade throughput in our simulation by up to 87.52%.

We expected data throughput to improve after transport switching, but instead it

dropped to 0 for three seconds (as shown in the line marked with “without sync request").

The reason for this throughput drop lies in the mechanism employed by QoT to perform

upgrade transport switching. Recall that QoT buffers packets and must receive a synchro-

nization packet from the receiver to clear its buffer. This causes a problem if the syn-

chronization packet is lost. In our simulation, the QoT layer on node 1 found its output

buffer full and requested a data synchronization before thetransport switching. Since WiFi

was suffering from serious collisions, this synchronization request was also delayed. Af-

ter about 3 seconds, node 1 received synchronization response from node 2, released the

acknowledged packets from its output buffer and resumed data transfer. Hence the data

throughput goes up again after second 17. Switching to Bluetooth improves throughput

because there are no competing connections on this transport. Note that we implemented

the Adaptive Frequency Hopping (AFH) in Bluetooth in ns-2, so that it does not interfere

with WiFi in this case.

To fix this problem, we modified the QoT specification so that the QoT layer on the

sending node immediately requests data synchronization onthe new transport after con-

ducting upgrade transport switching. Since the new transport typically performs better than

the previous transport, there is a better chance that this synchronization packet gets through

quickly, enabling data communication to resume sooner. In Fig. 5.2, the line marked by

“with sync request" shows the result with this fix. Data throughput quickly goesup after

the transport switching from WiFi to Bluetooth. This demonstrates that dynamic transport

switching of heterogeneous nodes can effectively avoid collisions in ad hoc networks.

19

www.manaraa.com

2 1

10m

WiFi connection

Bluetooth connection
10m

2 1

10m

WiFi connection

Bluetooth connection
10m

Figure 5.3: Use Transport Switching to Avoid Interference

As observed in Fig. 5.2, the data throughput drops by about 18.5% after the trans-

port switching even with the above fix. This is caused by the overhead of the transport

availability query, which will be further discussed in following section.

5.2 Avoiding interference

Interference between disparate wireless technologies, especially in the 2.4 GHz

unlicensed ISM band, may negatively affect data throughput. Heterogeneous nodes can

avoid interference by dynamically switching to a less noisytransport. In this simulation,

we disabled the AFH function of Bluetooth so that there is overlapping on frequency band

between WiFi and Bluetooth. By doing so, signals from WiFi and Bluetooth may interfere

with each other in our simulation.

As shown in Fig. 5.3, a pair of heterogeneous nodes, node 1 andnode 2, commu-

nicate with each other. Both of them support WiFi and Bluetooth. We also place five pairs

of homogeneous Bluetooth nodes around node 2. Node 2 is within the ranges of homoge-

neous Bluetooth nodes, while node 1 is not. All nodes remain static during the life time of

simulation. In the simulation, the traffic model between node 1 and node 2 is the same as

described in the previous section.

Fig. 5.4 shows that switching from WiFi to Bluetooth can avoid interference and

increase data throughput. In this simulation, we plot data throughput for the case when

20

www.manaraa.com

Use t r a nspor t switch to a v oid inte r fe r e nce

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19

Tim e (se conds)

T
h

ro
u

g
h

p
u

t
(
K

B
/

s
)

with availablity query

without availability

query

Figure 5.4: Avoiding Interference

QoT conducts periodic transport availability queries, andwhen it does not. At second

8, five FTP sessions start at the five homogeneous node pairs. Since the active transport

that heterogeneous nodes used to transmit data traffic is WiFi, and it is severely interfered

by Bluetooth signals, data throughput drops beginning at second 8. At second 14, the

two heterogeneous nodes switch the active transport from WiFi to Bluetooth. Bluetooth

improves throughput because it performs frequency hoppingat a rate of625 µs and hence

suffers less from frequency interferences when compared toWiFi.

A major problem with QoT occurs when it conducts transport availability queries,

causing QoT to stop transmitting any data for a short period of time. At second 14, the data

throughput values collected with transport availability queries are in most cases smaller

than those collected without transport availability queries. This is because QoT stops packet

transfers when performing a transport availability query until it receives a query response

or the query timer expires. QoT queries all the shared transports (WiFi and Bluetooth in

this simulation) one after another. This is to avoid potential overlapping during the time

when availability query packets are sent, which would causeerroneous query results. If a

query response cannot get back quickly, data throughput is negatively affected. The extent

to which data throughput might be affected is decided by the ambient wireless environment

21

www.manaraa.com

of the communicating heterogeneous nodes and the length of the query timeout. In this sim-

ulation, we use a query timeout of 500ms, and observe the largest throughput degradation

at second 19, where throughput degrades by 43%.

A potential solution for this “freeze" problem is to utilize a mechanism that can

intelligently separate frequency bands used by the transports within a device. If operating

on the same frequencies, transports co-located on a device may interfere severely with each

other when transmitting or receiving packets at the same time. One example is the RIA

project [12], in which Bluetooth avoids frequencies on which it detects WiFi interference.

Device manufacturers could also partition the spectrum among the networking interfaces in

the device. However detailed discussion on potential solutions to this problem is not within

the scope of this paper.

One interesting aspect of this simulation is that the throughput achieved in Fig. 5.4

is lower than the corresponding values in Fig. 5.2, due to Bluetooth interference on the

WiFi transport. The master Bluetooth node (the Bluetooth transport at node 1) continues to

poll the slave (the Bluetooth transport at node 2) to ascertain the status of the link. Polling

packets and the corresponding response packets may be sent at the same moment that WiFi

transmits packets. Such overlapping on the time of packet sending is caused by the way

in which a heterogeneous node is created in ns-2. A heterogeneous node is composed of

several homogeneous nodes. Protocols of a homogeneous nodemay generate and send

their own packets, such as the Reqest to Send (RTS) packet from the WiFi MAC layer and

the POLL packet from the Bluetooth Baseband layer. We schedule the timings that the

packets are to be sent at the QoT layer, but not at lower protocol layers. This is because

controlling the timings at all protocol layers would introduce too much runtime overhead

to ns-2.

22

www.manaraa.com

Chapter 6

Transport Availability Query Overhead

As has been shown in previous sections, the dynamic transport switching mech-

anism in heterogeneous nodes generates overhead due to periodic transport availability

queries. In this section, we evaluate the impact of transport availability queries in hetero-

geneous nodes on performance in mobile ad hoc networks.

6.1 Query overhead between two communicating nodes

In this section, we evaluate the overhead of transport availability queries on data

transfer when there is only one pair of heterogeneous nodes communicating with each

other. This is a common scenario in a user’s daily life, such as between his/her cell phone

and laptop computer in the office.

We conduct two simulations, one with UDP simulating real-time applications and

another with TCP simulating applications that require reliable data transmission. Two het-

erogeneous nodes, 5 meters apart, transmit packets via WiFi. Both nodes remain static

during the simulation, and both support two transports — Bluetooth and WiFi. To observe

the overhead of transport availability queries, we vary thequery interval from 20 seconds

to 0.5 seconds. We then average throughput over a simulationtime of 20 seconds at the

QoT layer of the receiving node. To prevent the overhead of availability queries being

overwhelmed by other interfering factors, we turned on the AFH function of Bluetooth so

that it does not interfere with WiFi. Since there are only twonodes in this scenario, there

is also no collision between WiFi traffic.

23

www.manaraa.com

Ov e r he a d of t r a nspor t a v a ila bility que r y

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20

Que r y inte r v a l (se conds)

A
v

e
ra

g
e

d
 t

h
ro

u
g

h
p

u
t

(
K

B
/

s
) TCP over WiFi

TCP over BT

UDP over WiFi

UDP over BT

Figure 6.1: Query Overhead Between Multiple CommunicatingNodes

Our first UDP simulation shows that transport availability queries do not signifi-

cantly impact a low-rate UDP flow. We use Constant Bit Rate (CBR) as a traffic generator.

In ns-2, CBR generates packets with a specified size at a predefined interval. We set CBR

to generate a 64 Byte packet every 100ms. The average throughput does not drop signif-

icantly. This is because UDP can send out small packets very quickly, and becomes idle

for the rest of the time in the relatively large inter-packetgap. In such a situation, sending

transport availability query packets would not delay CBR packet transfer.

Our second UDP simulation shows that transport availability queries can signifi-

cantly impact a high-rate UDP flow. We set CBR to generate a 512Byte packet every 3ms,

yielding the results shown in Fig. 6.1. With such a work load,UDP keeps busy sending

newly generated CBR packets, and transport availability query packets delay CBR packet

transmission. When we increase the transport availabilityquery interval from 0.5 seconds

to 20 seconds, the average throughput is increased by 23.59%over WiFi and by 11.15%

over Bluetooth. When using Bluetooth, the average data throughput doesn’t increase as

much as using WiFi due to the nature of master-slave communication in Bluetooth. Blue-

tooth is a Time Division Multiplexed (TDM) system, with a basic time unit of operation of

625 µs. A master node only transmits packets from even time slots, and slave nodes only

respond on odd time slots. This strict TDM scheme offsets theincrement in the average

24

www.manaraa.com

throughput, because nodes can only send packets at the time slots they are assigned to.

They cannot send when new packets are available if it is not their slots, and they have to

wait till their slots.

We then conducted a TCP simulation. The simulation results,as shown in Fig.

6.1, suggest that transport availability queries do not significantly impact FTP flow. By

increasing the transport availability query interval from0.5 seconds to 20 seconds, the

average throughput only increased by 2.28% over WiFi and by 1.59% over Bluetooth.

Longer query intervals don’t bring much benefit to data transfer in this situation since the

time spent at the TCP layer becomes the dominating factor on transmission delay.

6.2 Query Overhead From Multiple Communicating Nodes

In this section, we examine the overhead of transport availability queries on data

transfer when there are multiple pairs of communicating nodes and all of them conduct

periodic queries. This is to evaluate the impact of availability queries on data transfer in

the scenario of mesh networking. Although we are still dealing with single-hop communi-

cations in this section, the overhead incurred from periodic queries behaves the same as in

mesh networking.

In our simulation, we increase the number of communicating heterogeneous node

pairs from 1 to 5. Node 1 and node 2 communicate with each otherthrough WiFi. Nodes in

other pairs communicate via Bluetooth. We turn on the AFH function of Bluetooth in this

scenario so that there is no interference between Bluetoothand WiFi. Using this setup, we

can evaluate the impact of transport queries on WiFi throughput without sending all data on

WiFi, which will drown out the effects of the overhead. All pairs of heterogeneous nodes

conduct periodic transport availability queries at an interval of 1 second. As shown in Fig.

6.2, the distance of the two nodes within one pair is 5 meters,and the distance between

neighboring pairs is 1 meter. All nodes are within the range of each other’s transports. The

simulations last for 20 seconds, and the data shown in Fig. 6.3 and Fig. 6.4 are collected at

node 2.

When using CBR as the traffic generator and UDP as the transport layer protocol,

25

www.manaraa.com

1 2

5m

1m

WiFi connection

Bluetooth connection

1m

1m

1m

1 2

5m

1m

WiFi connection

Bluetooth connection

1m

1m

1m

Figure 6.2: Query Overhead Between Two Communicating Nodes

Ov e r he a d due to t r a nspor t que r y (UDP)

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

Num be r of node s

A
v

e
ra

g
e

d
 t

h
ro

u
g

h
p

u
t

(
K

B
/

s
)

with qot availability

query

with qot availability

query, with fix

without qot availability

query, with fix

Figure 6.3: Query Overhead between Multiple CommunicatingNodes

26

www.manaraa.com

Ov e r he a d due to t r a nspor t que r y (TCP)

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Num be r of node s

A
v

e
ra

g
e

d
 t

h
ro

u
g

h
p

u
t

(
K

B
/

s
) with qot availability

query

without qot availability

query

Figure 6.4: Query Overhead between Multiple CommunicatingNodes

as shown in Fig. 6.3, there is a significant difference in the average throughput between

communications with and without transport availability querying. With 5 pairs of nodes

conducting periodic transport availability queries on WiFi, the average throughput drops

by 17.93%. This is because QoT stops data transfer while conducting transport availability

queries.

As shown in Fig. 6.3, throughput drops to nearly zero when WiFi becomes crowded.

This drop occurs because UDP is an unreliable transport protocol and packets may be lost

due to WiFi collisions. If QoT’s synchronization packet is lost, a dead_lock may result

between node 1 and node 2. At node 1, QoT won’t remove packets from the buffer until

it receives a synchronization response message, but if the synchronization request packet

is lost, QoT never removes anything from the buffer, and the node cannot send packets out

any more. A solution to this problem is for QoT to not buffer data packets from the session

layer if the underlying transport is unreliable. When usingUDP, applications should be

responsible for providing reliability. Thus there is no need for packet synchronization, and

this problem can be avoided.

We then conducted a TCP simulation. Simulation results, as shown in Fig. 6.4,

suggest that there is no significant difference in the average throughput whether nodes

conduct periodic transport availability queries or not when there are fewer than 4 pairs of

27

www.manaraa.com

nodes. This is because the number of nodes that conduct periodic queries is small and the

WiFi transport is not crowded, so the time spent at the TCP layer is the dominating factor

for packet transmission delay. When more nodes perform transport availability querying,

WiFi becomes more crowded and throughput drops. This is why we can observe a further

drop of 3.93% in the average throughput when we employ 5 pairsof nodes. We can expect

that this value becomes even lower when the number of WiFi node pairs increases.

28

www.manaraa.com

Chapter 7

Conclusions and Future Work

In this paper, we introduced the value of constructing ad hocnetworks by employing

devices with multiple transports. Utilizing dynamic transport switching can provide better

connectivity in ad hoc networks.

We used QoT as an example dynamic transport switching mechanism, and demon-

strate that it can effectively mitigate the negative consequences of congestion and interfer-

ence that may occur in ad hoc networks.

Despite its benefits, a dynamic transport switching mechanism may also incur over-

head that limits data transfer. Since the example transportswitching mechanism we use in

this paper would freeze data transfer while performing transport availability querying, data

throughput may drop due to such queries.

We also addressed two problems found in QoT and presented preliminary solutions

to improve performance. In order to solve the problem that occurs when QoT conducts

upgrade transport switching, we proposed to let QoT requesta packet synchronization im-

mediately after it switches data communication to a new transport. To solve the problem in

the QoT output buffer, we proposed to not buffer session layer data packets at the QoT layer

when the underlying transport protocol is unreliable. But QoT still needs to buffer session

layer data packets when dealing with reliable transport layer protocols, such as TCP, or it

won’t know where to continue data communication upon a transport switch. Simulation

results suggest that the proposed solution can effectivelyimprove performance.

In this paper, we demonstrated the efficacy of dynamic transport switching for

29

www.manaraa.com

single-hop connections. For future research, we are pursuing work on issues that may

arise from multi-hop connections, such as how to conduct heterogeneous routing and how

to intelligently balance work loads between different sources.

30

www.manaraa.com

Appendix A

Heterogeneous Nodes and Dynamic Transport Switching in NS-2

This document describes the files comprising the heterogeneous nodes and dynamic

transport switching mechanism in NS-2. This document also provides guidelines on how

to configure simulations involving heterogeneous nodes in NS-2.

A.1 File Layout

The files comprising the heterogeneous nodes and dynamic transport switching

mechanism are organized under the/ns-2.28/qot directory.

Theqot directory includes the following files and subdirectory.

• qot.h

• hdr_qot.h

• ns-qot.tcl

• qot.cc

• qot-node.cc

• qot_queue.cc

• qot_timers.cc

• dm

31

www.manaraa.com

TPM

TAM

QoT Core QoT Brain

Device Manager RDT Table

Transport Layer

Session Layer

…

…

Figure A.1: QoT Architecture

File qot-node.cc contains functions that constitute theQoT Core module

in QoT architecture, as demonstrated in Fig.A.1. Fileqot.cc contains functions that

constitute theQoT Brain, Device Manager, TPM, TAM, and RDT Table mod-

ules. Fileqot_queue.cc contains functions that implement QoT data buffer. File

qot_timers.cc includes functions that deploy QoT internal timers. Filens-qot.tcl

includes QoT interface functions toTcl space. Directorydm includes files that deploy de-

cision making mechanisms inQoT Brain.

Interfacing functions to the original NS-2 architecture are also implemented, and

the files under the following directories are significantly modified.

• tcl/lib: ns-lib.tcl / ns-mobilenode.tcl / ns-packet.tcl

• apps: app.cc / app.h / udp.cc

• aodv: aodv.cc

• bluetooth: baseband.cc / baseband.h / ns-btnode.tcl

32

www.manaraa.com

• common: agent.cc / agent.h / mobilenode.h / packet.h

• mac: mac-802_11.cc / mac-802_11.h / mac.h / mac-wu.h

• queue: queue.h

• tcp: tcp-full.cc / tcp-sink.cc

• wpan: p802_15_4mac.cc

• wu: wu.cc

A.2 Simulations with Heterogeneous Nodes in NS-2

Tcl commands are implemented to let users be able to manage simulations that

involve heterogeneous nodes in NS-2. This section describes the usages of theseTcl

commands.

Since the heterogeneous nodes are modeled after QoT, creating a heterogeneous

node in a simulation is equivalent to creating a QoT node in NS-2. To create a QoT

node, the user needs to turn theqot flag on in thenodeconfig function ofTcl class

Simulator. Following is an example of creating a QoT node in a simulation.

$ns_ node-config -qot ON

set qot_node(0) [$ns_ node]

set qot_node(1) [$ns_ node]

$ns_ node-config -qot OFF

In the example above,$ns_ is an instance of theTcl classSimulator. After

theqot flag is turned on, creating a QoT node is the same as creating anordinary homoge-

neous node in the original NS-2 distribution. In this example, two QoT nodes are created.

Theqot flag is turned off after the creation of the QoT nodes in order to create potential

subsequent homogeneous nodes in the simulation.

33

www.manaraa.com

After a QoT node is created, transports need to be attached toit. Recall that het-

erogeneous nodes are "virtual" in the sense that they don’t possess traditional underlying

protocol stack layers. Homogeneous nodes are created as thetransports of a heterogeneous

node. Transports are attached to a QoT node by the commandattach_transport.

$qot_node(0) attach_transport BT $bt_node(0) TCP $tcp0

AODV

$qot_node(0) attach_transport WIFI $wifi_node(0) TCP

$tcp2 AODV

The example above attaches two transports, Bluetooth and WiFi, to a QoT node.BT

andWIFI inform the QoT node the type of the transports attached.$bt_node(0) and

$wifi_node(0) are handlers to the two transports, which are actually two homogeneous

nodes in NS-2.$tcp0 and$tcp2 are handlers of the transport layers of the transports

Bluetooth and WiFi respectively. AODV identifies the type ofthe routing agent that the

transports support.

Once QoT nodes are created, the user can use commandconnect-qot-node

in Tcl classSimulator to connect them.

$ns_ connect-qot-node $qot_node(0) $qot_node(1)

In order to realize the dynamic switching of data traffic between transports, traffic

generators are associated with the TPM module of QoT.

set ftp [new Application/FTP]

set tpm1 [new Agent/QTPM]

$ftp attach-qot $qot_node(0) $tpm1

34

www.manaraa.com

The example above first creates a FTP instance and a TPM moduleinstance.

The traffic generator is then linked to the TPM module texttt$tpm1 of QoT node

$qot_node(0). Commandattach-qot is implemented in theApplication class,

so that commonly used traffic generators, such as FTP and CBR,automatically inherit this

command.

To maintain an appearance of a single node in the simulation,a QoT node

synchronizes the coordinates of all its transports by the commandsetLocation.

$qot_node(0) setLocation 5.0 5.0 0.0

In the above example,$qot_node(0) set the coordinates of all its transports to

5.0 5.0 0.0.

QoT nodes can also move in a simulation. All the transports ofa QoT node move

to a new destination from a common starting point at a same speed.

$ns_ at 15.0 "$qot_node(0) setdest 10.0 6.0 1.0"

In above example,$qot_node(0) starts moving to (10.0, 6.0) with a speed of

1.0m/s.

A QoT node can conduct transport switching by commandtransport_switch.

$ns_ at 14.0 "$qot_node(0) transport_switch

[$qot_node(1) set id_] BT"

In the example above,$qot_node(0) communicates with$qot_node(1),

and switches the active transport to Bluetooth at second 14.0.

35

www.manaraa.com

Two statistical functions implemented in classQoTNode are also provided to help

users collect simulation results. CommandprintThroughput prints the throughput

over time collected at the QoT layer on the receiving node. CommandprintPower

prints the power consumption over time of the QoT node.

36

www.manaraa.com

Appendix B

Heterogeneous Node Reference Manual

B.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

act_trans_list . 41

app_data . 43

CallBack . 46

DevTabEntry . 49

p_consumption . 65

prio_info . 67

qot_con_acc . 69

qot_con_rej . 70

qot_con_req . 71

qot_data_snd . 72

qot_data_sync_pnt . 74

qot_data_sync_req . 75

qot_discon_acc . 76

qot_discon_req . 77

qot_rem_acc . 78

qot_rem_rej . 79

qot_rem_req . 80

qot_stack . 81

37

www.manaraa.com

qot_swh_acc . 83

qot_swh_qry . 84

qot_swh_qry_rep . 85

qot_swh_rej . 86

qot_swh_req . 87

qot_trans_info_qry .88

qot_trans_info_qry_rep .. . 90

qot_trans_qry . 92

qot_trans_qry_rep .93

QoTBrain . 94

QoTNode . 98

QoTPacket . 130

QoTQueue . 136

QoTOutQueue . 121

QTPM . 141

RDT . 145

sharedT . 150

stack_bt . 157

stack_wifi . 159

stack_wusb . 161

stack_zigbee . 163

StatTimer . 165

TAM . 170

throughput . 174

trans_info . 176

transport_stack . 178

TransportQueryTimer .182

38

www.manaraa.com

B.2 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

act_trans_list (Active transport link list) 41

app_data (The application data that a session layer protocol sends down to the

QoT layer) . 43

CallBack (Callback link list entry) 46

DevTabEntry (Entry in the Remote Device Table) 49

p_consumption (The power consumption link list item used inthe statistical timer) 65

prio_info (Transport priority information) 67

qot_con_acc (QOT_CONNECT_ACCEPT message) 69

qot_con_rej (QOT_CONNECT_REJECT message) 70

qot_con_req (QOT_CONNECT_REQUEST message) 71

qot_data_snd (QOT_DATA_SEND message) 72

qot_data_sync_pnt (QOT_DATA_SYNC_POINT message) 74

qot_data_sync_req (QOT_DATA_SYNC_REQUEST message) 75

qot_discon_acc (QOT_DISCONNECT_ACCEPT message) 76

qot_discon_req (QOT_DISCONNECT_REQUEST message) 77

qot_rem_acc (QOT_RESUME_ACCEPT messsage) 78

qot_rem_rej (QOT_RESUME_REJECT message) 79

qot_rem_req (QOT_RESUME_REQUEST message) 80

qot_stack (The union of possible transport stacks of a QoT node) 81

qot_swh_acc (QOT_SWITCH_ACCEPT message) 83

qot_swh_qry (QOT_SWITCH_QUERY message) 84

qot_swh_qry_rep (QOT_SWITCH_QUERY_RESPONSE) 85

qot_swh_rej (QOT_SWITCH_REJECT message) 86

qot_swh_req (QOT_SWITCH_REQUEST) .87

qot_trans_info_qry (QOT_TRANSPORT_INFO_QUERY messge content) . . . 88

qot_trans_info_qry_rep (QOT_TRANSPORT_INFO_QUERY_RESPONSE

messge content) . 90

39

www.manaraa.com

qot_trans_qry (QOT_TRANSPORT_QUERY message) 92

qot_trans_qry_rep (QOT_TRANSPORT_QUERY_RESPONSE messge content) 93

QoTBrain (QoT Brain) . 94

QoTNode (QoT node) . 98

QoTOutQueue (The send queue within a QoT node) 121

QoTPacket (Qot packet type) .. 130

QoTQueue (Super class for the receive and send buffers within a QoT node) . . . 136

QTPM (QoT TPM module) . 141

RDT (Remote Device Table) . 145

sharedT (Shared transport between two communicating QoT nodes) 150

stack_bt (Pointers to transport stacks of Bluetooth) 157

stack_wifi (Pointers to transport stacks of WiFi) 159

stack_wusb (Pointers to transport stacks of WUSB) 161

stack_zigbee (Pointers to transport stacks of ZigBee) 163

StatTimer (Statistical timer) 165

TAM (QoT TAM module) . 170

throughput (The throughput link list item used in the statistical timer) 174

trans_info (Structure used in QOT_TRANSPORT_QUERY_RESPONSE) 176

transport_stack (The protocol stack layer of a transport ofa QoT node) 178

TransportQueryTimer (Transport query timer) 182

40

www.manaraa.com

B.3 act_trans_list Struct Reference

Active transport link list.

#include <qot.h>

Collaboration diagram for act_trans_list:

Public Attributes

• sharedT∗ share

Pointer to the shared transport.

• act_trans_list∗ next_

Linkage to the next entry on the link list.

• act_trans_list∗ prev_

Linkage to the previous entry on the link list.

B.3.1 Detailed Description

Active transport link list.

This link list is maintained and used by QoTBrain for decision making purpose.

This list might be the sharedT list of the DevTabEntry or its subset. This list should always

be sorted and the most desired active transport should be placed to the head.

B.3.2 Member Data Documentation

41

www.manaraa.com

B.3.2.1 act_trans_list∗ act_trans_list::next_

Linkage to the next entry on the link list.

B.3.2.2 act_trans_list∗ act_trans_list::prev_

Linkage to the previous entry on the link list.

B.3.2.3 sharedT∗ act_trans_list::share

Pointer to the shared transport.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

42

www.manaraa.com

B.4 app_data Struct Reference

The application data that a session layer protocol sends down to the QoT layer.

#include <qot.h>

Collaboration diagram for app_data:

Public Attributes

• int size

The size of this application data packet, in bytes.

• AppData∗ dat

• const char∗ flag

• app_data∗ next_

Linkage to the next application data packet in the application packets link list of the QoT

node.

• nsaddr_t dest

The address of session packets destination.

• double ts_

B.4.1 Detailed Description

The application data that a session layer protocol sends down to the QoT layer.

B.4.2 Member Data Documentation

43

www.manaraa.com

B.4.2.1 AppData∗ app_data::dat

B.4.2.2 nsaddr_t app_data::dest

The address of session packets destination.

B.4.2.3 const char∗ app_data::flag

B.4.2.4 app_data∗ app_data::next_

Linkage to the next application data packet in the application packets link list of the

QoT node.

Session packets are buffered at the QoT layer before sendingout. Upon receiving

session layer packets, the Qot layer first check if there already exists a QoT connection for

this destination. If so, QoT segments the session packets into QoT packets and put them

into the QoT output buffer waiting to be sent out (if with TCP). If not, QoT put the session

packets in a buffer and start establishing the required connection.

B.4.2.5 int app_data::size

The size of this application data packet, in bytes.

B.4.2.6 double app_data::ts_

The documentation for this struct was generated from the following file:

44

www.manaraa.com

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

45

www.manaraa.com

B.5 CallBack Struct Reference

Callback link list entry.

#include <qot.h>

Collaboration diagram for CallBack:

Public Attributes

• char∗ call_type

Callback type: DATA_SYNC, PERIODIC_QUERY, SWITCH_REQUEST, DATA_SEND.

• sharedT∗ share

Pointer to a shared transport.

• nsaddr_t remote_id

The address of the remote device.

• DevTabEntry∗ entry

Pointer to an entry of the Remote Device Table.

• int pkt_id

QoT data packet sequence number.

• CallBack∗ next_

Pointer to the next item in the callback link list.

46

www.manaraa.com

B.5.1 Detailed Description

Callback link list entry.

B.5.2 Member Data Documentation

B.5.2.1 char∗ CallBack::call_type

Callback type: DATA_SYNC, PERIODIC_QUERY, SWITCH_REQUEST,

DATA_SEND.

B.5.2.2 DevTabEntry∗ CallBack::entry

Pointer to an entry of the Remote Device Table.

B.5.2.3 CallBack∗ CallBack::next_

Pointer to the next item in the callback link list.

B.5.2.4 int CallBack::pkt_id

QoT data packet sequence number.

B.5.2.5 nsaddr_t CallBack::remote_id

The address of the remote device.

47

www.manaraa.com

B.5.2.6 sharedT∗ CallBack::share

Pointer to a shared transport.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

48

www.manaraa.com

B.6 DevTabEntry Class Reference

Entry in the Remote Device Table.

#include <qot.h>

Collaboration diagram for DevTabEntry:

Public Member Functions

• DevTabEntry (RDT∗rdt)

Class constructor.

• nsaddr_t remote_id ()

Retrieve the ID of the communicating node.

• void set_id (nsaddr_t id)

Set the ID of the communicating node.

• void set_roll (int r)

Set the roll of this node in the communication.

• int roll ()

Retrieve the roll of this node.

• sharedT∗ currentT ()

Retrieve the pointer to the transport that is being used for communication.

• RDT ∗ rdt ()

49

www.manaraa.com

Pointer to the Remote Device Table.

• void setRDT (RDT∗rdt)

Set the pointer to the Remote Device Table.

• void setCurrent (sharedT∗t)

Set the pointer to the active transport.

• void setOldCurrent (sharedT∗t)

Set the pointer to the transport that was being used for the communication before the

transport switching.

• sharedT∗ oldCurrent ()

Retrieve the pointer to the transport that was being used forthe communication before

the transport switching.

• int received ()

• void setReceived (int i)

• int queLen ()

Retrieve the length of the queue.

• QoTState qotState ()

Retrieve the current state of QoT.

• void setState (QoTState st)

Set the state of QoT.

• app_data∗ check_app_buff ()

Retrieve the application packet buffer.

50

www.manaraa.com

• act_trans_list∗ get_active_by_tag (char∗tag)

Retrieve the active transport with the specified type.

• sharedT∗ getAvailShare ()

Retriee the first available transport in the shared transport link list.

• unsigned getPktID ()

Get the next QoT data packet ID.

• void handleAppData (app_data∗d)

Process the received session layer data packets.

• void createQoTHdr (int size, app_data∗d)

Create QoT data packet header.

• sharedT∗ getT (char∗tag, ns_addr_t dest)

• sharedT∗ hasT (char∗tag)

Check if there exists a shared transport with the specified type in the link list.

Public Attributes

• RDT ∗ rdt_

Pointer to the Remote Device Table that this table entry belongs to.

Private Member Functions

• int removeT (transport_stack∗r)

51

www.manaraa.com

Remove the shared transport from the link list.

• void syncCheck (unsigned id)

Request a data synchronization to the send buffer.

• void insertActiveTransport (sharedT∗share)

Insert the transport into the active transport list.

• void removeActiveTransport (sharedT∗share)

Remove the transport into the active transport list.

• void updateQueryResults (sharedT∗share, int result)

• void sortActiveTransport ()

Sort the active transports from high to low according to their utilities.

Private Attributes

• nsaddr_t devID

The address of the remote node.

• int query_complete

A flag that identifies if the transport availability query forthis remote device is done.

• QoTOutQueue∗ que

Pointer to the send buffer for this connection.

• sharedT∗ currentT_

Pointer to the active transport.

52

www.manaraa.com

• sharedT∗ old_currentT

Pointer to the transport that was used before the transport switching attempt.

• sharedT∗ share_t_hdr

Head of the link list of the shared transports of a QoT connection.

• sharedT∗ share_t_tail

Tail of the link list of the shared transport of a QoT connection.

• int roll_

The roll of the node in a QoT connection.

• act_trans_list∗ list_head

Head of the available shared transport link list.

• int rcvd_

• QoTState state

The QoT state for this connection.

• int infinite_send_

A flag that identifies if the traffic generator issues infinite packet send.

• app_data∗ app_buff

A buffer to store session data packet information.

• unsigned qot_pkt_id

Sequence number of QoT data packet.

53

www.manaraa.com

• DevTabEntry∗ next_

Pointer to the next device table entry on the link list.

• DevTabEntry∗ prev_

Pointer to the previous device table entry on the link list.

Friends

• class RDT

• class QoTBrain

• class QoTNode

• class QoTOutQueue

• class TransportQueryTimer

• class SyncTimer

B.6.1 Detailed Description

Entry in the Remote Device Table.

QoT creates an entry in the Remote Device Table for each communicating node.

B.6.2 Constructor & Destructor Documentation

B.6.2.1 DevTabEntry::DevTabEntry (RDT ∗ rdt)

Class constructor.

54

www.manaraa.com

B.6.3 Member Function Documentation

B.6.3.1 app_data∗ DevTabEntry::check_app_buff () [inline]

Retrieve the application packet buffer.

B.6.3.2 void DevTabEntry::createQoTHdr (int size, app_data∗ d)

Create QoT data packet header.

This function creates the QoT headers for QoT data packets. The actual packets

are created at the transport layer. The headers created hereare copied to the corresponding

fields of the actual packets after they are created.

Parameters:

size The size of the QoT data packet that is to be created.

d The session layer data packet.

B.6.3.3 sharedT∗ DevTabEntry::currentT () [inline]

Retrieve the pointer to the transport that is being used for communication.

B.6.3.4 act_trans_list∗ DevTabEntry::get_active_by_tag (char∗ tag)

Retrieve the active transport with the specified type.

If no transport with the specified type found in the list, NULLis returned.

55

www.manaraa.com

Parameters:

tag The type of the transport, such as WIFI or BT.

B.6.3.5 sharedT∗ DevTabEntry::getAvailShare ()

Retriee the first available transport in the shared transport link list.

B.6.3.6 unsigned DevTabEntry::getPktID () [inline]

Get the next QoT data packet ID.

B.6.3.7 sharedT∗ DevTabEntry::getT (char ∗ tag, ns_addr_tdest)

Return the pointer to the shared pointer that meets the specified type and address.

Create a new shared transport entry with the specified type and address if no transport is

found. Correponding fields in the entry are filled. The newly created entry is appended to

the link list.

Parameters:

tag The type of the shared transport, such as WIFI or BT.

dest The address and the port number of the corresponding transport on the remote

node.

Returns:

The pointer to the transport with the specified type and address.

56

www.manaraa.com

B.6.3.8 void DevTabEntry::handleAppData (app_data∗ d)

Process the received session layer data packets.

Segment the sessoin layer data packet into QoT data packets.If the infinite_send_

flag is set, QoT data packets will be generated till the queue is full.

Parameters:

d Session layer data packet.

B.6.3.9 sharedT∗ DevTabEntry::hasT (char ∗ tag)

Check if there exists a shared transport with the specified type in the link list.

Parameters:

The type of the shared transport, such as WIFI or BT.

Returns:

The pointer to the transport with the specified type or NULL.

B.6.3.10 void DevTabEntry::insertActiveTransport (sharedT ∗ share) [private]

Insert the transport into the active transport list.

Parameters:

The shared transport that is to be inserted.

B.6.3.11 sharedT∗ DevTabEntry::oldCurrent () [inline]

Retrieve the pointer to the transport that was being used forthe communication

before the transport switching.

57

www.manaraa.com

B.6.3.12 QoTState DevTabEntry::qotState () [inline]

Retrieve the current state of QoT.

B.6.3.13 int DevTabEntry::queLen () [inline]

Retrieve the length of the queue.

B.6.3.14 RDT∗ DevTabEntry::rdt () [inline]

Pointer to the Remote Device Table.

B.6.3.15 int DevTabEntry::received () [inline]

B.6.3.16 nsaddr_t DevTabEntry::remote_id () [inline]

Retrieve the ID of the communicating node.

B.6.3.17 void DevTabEntry::removeActiveTransport (sharedT ∗ share)

[private]

Remove the transport into the active transport list.

Parameters:

The shared transport that is to be removed.

58

www.manaraa.com

B.6.3.18 int DevTabEntry::removeT (transport_stack∗ r) [private]

Remove the shared transport from the link list.

Parameters:

r The protocol stack of the transport that is to be removed fromthe link list.

Returns:

0 if there is no more shared transport after the removal. 1 if removal operation failed.

B.6.3.19 int DevTabEntry::roll () [inline]

Retrieve the roll of this node.

B.6.3.20 void DevTabEntry::set_id (nsaddr_tid) [inline]

Set the ID of the communicating node.

B.6.3.21 void DevTabEntry::set_roll (int r) [inline]

Set the roll of this node in the communication.

1 for master node, 0 for slave node.

B.6.3.22 void DevTabEntry::setCurrent (sharedT∗ t) [inline]

Set the pointer to the active transport.

59

www.manaraa.com

B.6.3.23 void DevTabEntry::setOldCurrent (sharedT∗ t) [inline]

Set the pointer to the transport that was being used for the communication before

the transport switching.

This pointer is used for fallback in case of a failed upgrade transport switching.

B.6.3.24 void DevTabEntry::setRDT (RDT∗ rdt) [inline]

Set the pointer to the Remote Device Table.

B.6.3.25 void DevTabEntry::setReceived (inti) [inline]

B.6.3.26 void DevTabEntry::setState (QoTStatest) [inline]

Set the state of QoT.

B.6.3.27 void DevTabEntry::sortActiveTransport () [private]

Sort the active transports from high to low according to their utilities.

B.6.3.28 void DevTabEntry::syncCheck (unsignedid) [inline, private]

Request a data synchronization to the send buffer.

Parameters:

id The sequence number of the data packet that is last received by the remote node.

60

www.manaraa.com

B.6.3.29 void DevTabEntry::updateQueryResults (sharedT∗ share, int result)

[private]

B.6.4 Friends And Related Function Documentation

B.6.4.1 friend class QoTBrain [friend]

B.6.4.2 friend class QoTNode[friend]

B.6.4.3 friend class QoTOutQueue[friend]

B.6.4.4 friend class RDT [friend]

B.6.4.5 friend class SyncTimer [friend]

B.6.4.6 friend class TransportQueryTimer [friend]

B.6.5 Member Data Documentation

61

www.manaraa.com

B.6.5.1 app_data∗ DevTabEntry::app_buff [private]

A buffer to store session data packet information.

B.6.5.2 sharedT∗ DevTabEntry::currentT_ [private]

Pointer to the active transport.

B.6.5.3 nsaddr_t DevTabEntry::devID [private]

The address of the remote node.

B.6.5.4 int DevTabEntry::infinite_send_ [private]

A flag that identifies if the traffic generator issues infinite packet send.

B.6.5.5 act_trans_list∗ DevTabEntry::list_head [private]

Head of the available shared transport link list.

B.6.5.6 DevTabEntry∗ DevTabEntry::next_ [private]

Pointer to the next device table entry on the link list.

62

www.manaraa.com

B.6.5.7 sharedT∗ DevTabEntry::old_currentT [private]

Pointer to the transport that was used before the transport switching attempt.

B.6.5.8 DevTabEntry∗ DevTabEntry::prev_ [private]

Pointer to the previous device table entry on the link list.

B.6.5.9 unsigned DevTabEntry::qot_pkt_id [private]

Sequence number of QoT data packet.

Start from 0.

B.6.5.10 QoTOutQueue∗ DevTabEntry::que [private]

Pointer to the send buffer for this connection.

B.6.5.11 int DevTabEntry::query_complete [private]

A flag that identifies if the transport availability query forthis remote device is done.

B.6.5.12 int DevTabEntry::rcvd_ [private]

B.6.5.13 RDT∗ DevTabEntry::rdt_

Pointer to the Remote Device Table that this table entry belongs to.

63

www.manaraa.com

B.6.5.14 int DevTabEntry::roll_ [private]

The roll of the node in a QoT connection.

1 for master, 0 for slave.

B.6.5.15 sharedT∗ DevTabEntry::share_t_hdr [private]

Head of the link list of the shared transports of a QoT connection.

B.6.5.16 sharedT∗ DevTabEntry::share_t_tail [private]

Tail of the link list of the shared transport of a QoT connection.

B.6.5.17 QoTState DevTabEntry::state [private]

The QoT state for this connection.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

64

www.manaraa.com

B.7 p_consumption Struct Reference

The power consumption link list item used in the statisticaltimer.

#include <qot.h>

Collaboration diagram for p_consumption:

Public Attributes

• p_consumption∗ next

Pointer to the next item in the link list.

• double p_value

Power consumption value.

• double t

The time period that the collected data correspond to.

B.7.1 Detailed Description

The power consumption link list item used in the statisticaltimer.

B.7.2 Member Data Documentation

B.7.2.1 p_consumption∗ p_consumption::next

Pointer to the next item in the link list.

65

www.manaraa.com

B.7.2.2 double p_consumption::p_value

Power consumption value.

B.7.2.3 double p_consumption::t

The time period that the collected data correspond to.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

66

www.manaraa.com

B.8 prio_info Struct Reference

Transport priority information.

#include <hdr.h>

Collaboration diagram for prio_info:

Public Attributes

• char∗ tag

Transport type.

• double utility

Transport utility.

• prio_info∗ next

• prio_info∗ prev

B.8.1 Detailed Description

Transport priority information.

B.8.2 Member Data Documentation

B.8.2.1 prio_info∗ prio_info::next

67

www.manaraa.com

B.8.2.2 prio_info∗ prio_info::prev

B.8.2.3 char∗ prio_info::tag

Transport type.

B.8.2.4 double prio_info::utility

Transport utility.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

68

www.manaraa.com

B.9 qot_con_acc Struct Reference

QOT_CONNECT_ACCEPT message.

#include <hdr.h>

B.9.1 Detailed Description

QOT_CONNECT_ACCEPT message.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

69

www.manaraa.com

B.10 qot_con_rej Struct Reference

QOT_CONNECT_REJECT message.

#include <hdr.h>

Public Attributes

• QoTReason reason

Reject reason.

B.10.1 Detailed Description

QOT_CONNECT_REJECT message.

B.10.2 Member Data Documentation

B.10.2.1 QoTReason qot_con_rej::reason

Reject reason.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

70

www.manaraa.com

B.11 qot_con_req Struct Reference

QOT_CONNECT_REQUEST message.

#include <hdr.h>

Public Attributes

• char∗ tag

Transport type.

B.11.1 Detailed Description

QOT_CONNECT_REQUEST message.

B.11.2 Member Data Documentation

B.11.2.1 char∗ qot_con_req::tag

Transport type.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

71

www.manaraa.com

B.12 qot_data_snd Struct Reference

QOT_DATA_SEND message.

#include <hdr.h>

Public Attributes

• const char∗ app_flag

• AppData∗ app_data

• unsigned qot_pkt_id

Qot data packet id.

B.12.1 Detailed Description

QOT_DATA_SEND message.

B.12.2 Member Data Documentation

B.12.2.1 AppData∗ qot_data_snd::app_data

B.12.2.2 const char∗ qot_data_snd::app_flag

72

www.manaraa.com

B.12.2.3 unsigned qot_data_snd::qot_pkt_id

Qot data packet id.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

73

www.manaraa.com

B.13 qot_data_sync_pnt Struct Reference

QOT_DATA_SYNC_POINT message.

#include <hdr.h>

Public Attributes

• int credit

• unsigned pkt_id

The ID of the packet that is last received.

B.13.1 Detailed Description

QOT_DATA_SYNC_POINT message.

B.13.2 Member Data Documentation

B.13.2.1 int qot_data_sync_pnt::credit

B.13.2.2 unsigned qot_data_sync_pnt::pkt_id

The ID of the packet that is last received.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

74

www.manaraa.com

B.14 qot_data_sync_req Struct Reference

QOT_DATA_SYNC_REQUEST message.

#include <hdr.h>

B.14.1 Detailed Description

QOT_DATA_SYNC_REQUEST message.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

75

www.manaraa.com

B.15 qot_discon_acc Struct Reference

QOT_DISCONNECT_ACCEPT message.

#include <hdr.h>

B.15.1 Detailed Description

QOT_DISCONNECT_ACCEPT message.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

76

www.manaraa.com

B.16 qot_discon_req Struct Reference

QOT_DISCONNECT_REQUEST message.

#include <hdr.h>

B.16.1 Detailed Description

QOT_DISCONNECT_REQUEST message.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

77

www.manaraa.com

B.17 qot_rem_acc Struct Reference

QOT_RESUME_ACCEPT messsage.

#include <hdr.h>

Public Attributes

• int sync_point

B.17.1 Detailed Description

QOT_RESUME_ACCEPT messsage.

B.17.2 Member Data Documentation

B.17.2.1 int qot_rem_acc::sync_point

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

78

www.manaraa.com

B.18 qot_rem_rej Struct Reference

QOT_RESUME_REJECT message.

#include <hdr.h>

B.18.1 Detailed Description

QOT_RESUME_REJECT message.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

79

www.manaraa.com

B.19 qot_rem_req Struct Reference

QOT_RESUME_REQUEST message.

#include <hdr.h>

Public Attributes

• int sync_point

The sequence number of the qot data packet from where the connection should be resumed.

B.19.1 Detailed Description

QOT_RESUME_REQUEST message.

B.19.2 Member Data Documentation

B.19.2.1 int qot_rem_req::sync_point

The sequence number of the qot data packet from where the connection should be

resumed.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

80

www.manaraa.com

B.20 qot_stack Union Reference

The union of possible transport stacks of a QoT node.

#include <qot.h>

Collaboration diagram for qot_stack:

Public Attributes

• stack_bt bt

• stack_wifi wifi

• stack_zigbee zigbee

• stack_wusb wusb

B.20.1 Detailed Description

The union of possible transport stacks of a QoT node.

B.20.2 Member Data Documentation

B.20.2.1 stack_bt qot_stack::bt

B.20.2.2 stack_wifi qot_stack::wifi

81

www.manaraa.com

B.20.2.3 stack_wusb qot_stack::wusb

B.20.2.4 stack_zigbee qot_stack::zigbee

The documentation for this union was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

82

www.manaraa.com

B.21 qot_swh_acc Struct Reference

QOT_SWITCH_ACCEPT message.

#include <hdr.h>

Public Attributes

• char∗ tag

Transport type.

B.21.1 Detailed Description

QOT_SWITCH_ACCEPT message.

B.21.2 Member Data Documentation

B.21.2.1 char∗ qot_swh_acc::tag

Transport type.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

83

www.manaraa.com

B.22 qot_swh_qry Struct Reference

QOT_SWITCH_QUERY message.

#include <hdr.h>

Public Attributes

• SwitchType type

Switch type, upgrade switching or downgrade switching.

B.22.1 Detailed Description

QOT_SWITCH_QUERY message.

B.22.2 Member Data Documentation

B.22.2.1 SwitchType qot_swh_qry::type

Switch type, upgrade switching or downgrade switching.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

84

www.manaraa.com

B.23 qot_swh_qry_rep Struct Reference

QOT_SWITCH_QUERY_RESPONSE.

#include <hdr.h>

Collaboration diagram for qot_swh_qry_rep:

Public Attributes

• prio_info∗ pri_list

Transport information link list.

B.23.1 Detailed Description

QOT_SWITCH_QUERY_RESPONSE.

B.23.2 Member Data Documentation

B.23.2.1 prio_info∗ qot_swh_qry_rep::pri_list

Transport information link list.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

85

www.manaraa.com

B.24 qot_swh_rej Struct Reference

QOT_SWITCH_REJECT message.

#include <hdr.h>

Public Attributes

• char∗ tag

Transport type.

B.24.1 Detailed Description

QOT_SWITCH_REJECT message.

B.24.2 Member Data Documentation

B.24.2.1 char∗ qot_swh_rej::tag

Transport type.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

86

www.manaraa.com

B.25 qot_swh_req Struct Reference

QOT_SWITCH_REQUEST.

#include <hdr.h>

Public Attributes

• char∗ tag

Transport type.

B.25.1 Detailed Description

QOT_SWITCH_REQUEST.

B.25.2 Member Data Documentation

B.25.2.1 char∗ qot_swh_req::tag

Transport type.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

87

www.manaraa.com

B.26 qot_trans_info_qry Struct Reference

QOT_TRANSPORT_INFO_QUERY messge content.

#include <hdr.h>

Public Attributes

• char∗ tag

• int count

• double SNR_request

• double signal_request

B.26.1 Detailed Description

QOT_TRANSPORT_INFO_QUERY messge content.

B.26.2 Member Data Documentation

B.26.2.1 int qot_trans_info_qry::count

B.26.2.2 double qot_trans_info_qry::signal_request

B.26.2.3 double qot_trans_info_qry::SNR_request

88

www.manaraa.com

B.26.2.4 char∗ qot_trans_info_qry::tag

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

89

www.manaraa.com

B.27 qot_trans_info_qry_rep Struct Reference

QOT_TRANSPORT_INFO_QUERY_RESPONSE messge content.

#include <hdr.h>

Public Attributes

• int count

• double SNR_request

• double SNR_response

• double signal_request

• double signal_response

B.27.1 Detailed Description

QOT_TRANSPORT_INFO_QUERY_RESPONSE messge content.

B.27.2 Member Data Documentation

B.27.2.1 int qot_trans_info_qry_rep::count

B.27.2.2 double qot_trans_info_qry_rep::signal_request

90

www.manaraa.com

B.27.2.3 double qot_trans_info_qry_rep::signal_response

B.27.2.4 double qot_trans_info_qry_rep::SNR_request

B.27.2.5 double qot_trans_info_qry_rep::SNR_response

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

91

www.manaraa.com

B.28 qot_trans_qry Struct Reference

QOT_TRANSPORT_QUERY message.

#include <hdr.h>

B.28.1 Detailed Description

QOT_TRANSPORT_QUERY message.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

92

www.manaraa.com

B.29 qot_trans_qry_rep Struct Reference

QOT_TRANSPORT_QUERY_RESPONSE messge content.

#include <hdr.h>

Collaboration diagram for qot_trans_qry_rep:

Public Attributes

• int num

• trans_info∗ head

B.29.1 Detailed Description

QOT_TRANSPORT_QUERY_RESPONSE messge content.

B.29.2 Member Data Documentation

B.29.2.1 trans_info∗ qot_trans_qry_rep::head

B.29.2.2 int qot_trans_qry_rep::num

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

93

www.manaraa.com

B.30 QoTBrain Class Reference

QoT Brain.

#include <qot.h>

Collaboration diagram for QoTBrain:

Public Member Functions

• QoTBrain ()

Class constructor.

• void setnode (QoTNode∗node)

Set the pointer to the QoT node that this QoT brain belongs to.

• void settable (RDT∗table)

Set the pointer to the Remote Device Table that this QoT brainassociates with.

• void startQuery (DevTabEntry∗entry)

Start transport availability query.

• void activeHeadChanged (DevTabEntry∗entry, SwitchType type)

Static Public Member Functions

• static void calculateUtilitybyPower (sharedT∗)

Calculate the utility of a transport by its power consumption.

• static void calculateUtilitybyDatarate (sharedT∗)

94

www.manaraa.com

Calculate the utility of a transport by its data rate.

Public Attributes

• void(∗ getUtility)(sharedT∗)

Private Attributes

• QoTNode∗ node_

Pointer to the QoT node that this QoT brain belongs to.

• RDT ∗ rd_table

Pointer to the Remote Device Table that this QoT brain associates with.

B.30.1 Detailed Description

QoT Brain.

B.30.2 Constructor & Destructor Documentation

B.30.2.1 QoTBrain::QoTBrain ()

Class constructor.

B.30.3 Member Function Documentation

95

www.manaraa.com

B.30.3.1 void QoTBrain::activeHeadChanged (DevTabEntry∗ entry, SwitchType

type)

B.30.3.2 static void QoTBrain::calculateUtilitybyDatarate (sharedT∗) [static]

Calculate the utility of a transport by its data rate.

B.30.3.3 static void QoTBrain::calculateUtilitybyPower(sharedT∗) [static]

Calculate the utility of a transport by its power consumption.

B.30.3.4 void QoTBrain::setnode (QoTNode∗ node) [inline]

Set the pointer to the QoT node that this QoT brain belongs to.

B.30.3.5 void QoTBrain::settable (RDT∗ table) [inline]

Set the pointer to the Remote Device Table that this QoT brainassociates with.

B.30.3.6 void QoTBrain::startQuery (DevTabEntry ∗ entry)

Start transport availability query.

Parameters:

entry An RDT entry that includes shared transports that need to conduct availability

queries.

96

www.manaraa.com

B.30.4 Member Data Documentation

B.30.4.1 void(∗ QoTBrain::getUtility)(sharedT ∗)

B.30.4.2 QoTNode∗ QoTBrain::node_ [private]

Pointer to the QoT node that this QoT brain belongs to.

B.30.4.3 RDT∗ QoTBrain::rd_table [private]

Pointer to the Remote Device Table that this QoT brain associates with.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

97

www.manaraa.com

B.31 QoTNode Class Reference

QoT node.

#include <qot.h>

Collaboration diagram for QoTNode:

Public Member Functions

• QoTNode ()

Class constructor.

• int command (int argc, const char∗const∗argv)

Command function that implements Tcl-C++ interfacing functions.

• transport_stack∗ get_trans_by_tag (char∗s)

Retrieve a transport stack according to the provided string.

• hdr_qot∗ getDummy ()

Retrieve the QoT header stored in the dummy_.

• void clearDummy ()

Clear the data stored in the dummy_.

• void setDummy (hdr_qot∗hdr)

Set the dummy_.

• void setTPM (QTPM∗tpm)

98

www.manaraa.com

Set the pointer to a TPM module.

• void setApp (Application∗app)

Set the pointer to the session layer protocol.

• nsaddr_t getDest ()

Retrieve the address of the remote device.

• void checkRecvBuff (DevTabEntry∗entry)

• void recv (Packet∗p, transport_stack∗stack)

Receive incoming packets.

• void sendDown (transport_stack∗s)

Send a QoT packet down to the underlying protocol.

• void downRecv (int size, AppData∗appdata, const char∗flags=0)

Receive a packet from the session layer protocol.

• void linkBreak (Packet∗p)

Link break handler.

• void printLocation ()

Print the coordiates of the transports of this QoT node.

• void devDiscover (nsaddr_t dst)

Discover remote device.

• void transQuery (nsaddr_t dst, transport_stack∗stack)

99

www.manaraa.com

QOT_TRANSPORT_QUERY.

• void transQueryResponse (Packet∗p, transport_stack∗stack)

QOT_TRANSPORT_QUERY_RESPONSE.

• void transInfoQuery (sharedT∗share, nsaddr_t dst)

QOT_TRANSPORT_INFO_QUERY.

• void transInfoQueryResponse (Packet∗p, transport_stack∗stack, double request,

double signal, int count)

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

• void connectRequest (sharedT∗share, nsaddr_t dst)

QOT_CONNECT_REQUEST.

• void connectAccept (sharedT∗share, nsaddr_t dst)

QOT_CONNECT_ACCEPT.

• void connectReject (Packet∗p, transport_stack∗stack, QoTReason r)

QOT_CONNECT_REJECT.

• void dataSend (DevTabEntry∗entry)

QOT_DATA_SEND.

• void dataSync (DevTabEntry∗entry)

QOT_DATA_SYNC_POINT.

• void switchQuery (DevTabEntry∗entry, SwitchType type)

100

www.manaraa.com

QOT_SWITCH_QUERY.

• void switchQueryResponse (DevTabEntry∗entry, nsaddr_t dst)

QOT_SWITCH_QUERY_RESPONSE.

• void switchRequest (sharedT∗share, nsaddr_t dst)

QOT_SWITCH_REQUEST.

• void switchAccept (sharedT∗share, nsaddr_t dst)

QOT_SWITCH_ACCEPT.

• void switchReject (sharedT∗share, nsaddr_t dst)

QOT_SWITCH_REJECT.

• void resumeRequest (DevTabEntry∗entry, nsaddr_t dst)

QOT_RESUME_REQUEST.

• void resumeAccept (DevTabEntry∗entry, nsaddr_t dst)

QOT_RESUME_ACCEPT.

• void resumeReject (sharedT∗share, nsaddr_t dst)

QOT_RESUME_REJECT.

• void disconnectRequest (sharedT∗share, nsaddr_t dst)

QOT_DISCONNECT_REQUEST.

• void disconnectAccept (sharedT∗share, nsaddr_t dst)

QOT_DISCONNECT_ACCEPT.

101

www.manaraa.com

• QoTOutQueue∗ checkOutputBuff (nsaddr_t dest)

Retrieve the send buffer for a connection.

• transport_stack∗ getStack (char∗tag)

Retrieve a transport stack of the QoT node.

• void checkCallBack ()

Check callback queue.

• void printQoTPacket (hdr_qot∗hdr)

Print QoT packet information.

Public Attributes

• int busy_

The flag that identifies if the QoT node is performing transport availability query.

• StatTimer∗ s_timer

Statistical timer.

Private Attributes

• hdr_qot∗ dummy_

The buffer that transfers QoT packet header information to the transport agent when it

creates a packet.

• nsaddr_t dst_

102

www.manaraa.com

The address of the remote device.

• transport_stack∗ trans_head

Head of the transport stack link list.

• int transport_nn

• int do_query

• agent_value agent_v

• TransportQueryTimer∗ tq_timer

Transport query timer.

• QTPM∗ tpm_

Pointer to a TPM module.

• Application∗ app_

Pointer to the attached session layer protocol.

• QoTQueue∗ recv_buff

QoT receive buffer.

• RDT ∗ rd_table

Pointer to the Remote Device Table.

• QoTBrain∗ brain

Pointer to the QoT brain.

• CallBack∗ call_back_h

Head of the callback link list.

103

www.manaraa.com

• CallBack∗ call_back_t

Tail of the callback link list.

Friends

• class QoTBrain

• class DevTabEntry

• class Application

• class Agent

• class AccessQueryAgent

• class QoTQueryTimer

• class QoTOutQueue

• class TransportQueryTimer

• class StatTimer

B.31.1 Detailed Description

QoT node.

The key component of a QoT node.

B.31.2 Constructor & Destructor Documentation

B.31.2.1 QoTNode::QoTNode ()

Class constructor.

104

www.manaraa.com

B.31.3 Member Function Documentation

B.31.3.1 void QoTNode::checkCallBack ()

Check callback queue.

The master QoT node stops data transfer when conducting transport availability

queries. Events during the query process are inserted to a callback queue. After the avail-

ability queries are done, QoT node checks the callback queueto handle those events.

B.31.3.2 QoTOutQueue∗ QoTNode::checkOutputBuff (nsaddr_t dest)

Retrieve the send buffer for a connection.

Parameters:

dest The address of the remote device. This parameter is used to identify the connec-

tion.

Returns:

The pointer to the send buffer of the specified connection.

B.31.3.3 void QoTNode::checkRecvBuff (DevTabEntry∗ entry)

Check out session layer data packets stored in the QoT node receive buffer, and

move them to the corresponding send buffer.

Parameters:

entry The Remote Device Table entry that corresponds to the connection.

105

www.manaraa.com

B.31.3.4 void QoTNode::clearDummy () [inline]

Clear the data stored in the dummy_.

B.31.3.5 int QoTNode::command (intargc, const char∗const∗ argv)

Command function that implements Tcl-C++ interfacing functions.

Parameters:

argc Argument count.

argv Argument vector.

B.31.3.6 void QoTNode::connectAccept (sharedT∗ share, nsaddr_t dst)

QOT_CONNECT_ACCEPT.

Upon receiving an connection request message, the slave QoTnodes decides

whether to accept the request or not. If accept, response with this function.

Parameters:

share The shared transport that the connection is to be established.

dst The address of the remote device

B.31.3.7 void QoTNode::connectReject (Packet∗ p, transport_stack ∗ stack,

QoTReasonr)

QOT_CONNECT_REJECT.

Upon receiving an connection request message, the slave QoTnodes decides

whether to accept the request or not. If reject, response with this function.

106

www.manaraa.com

Parameters:

p The connect request packet.

stack The transport stack over which the request was received.

r The reason that the request is rejected.

B.31.3.8 void QoTNode::connectRequest (sharedT∗ share, nsaddr_t dst)

QOT_CONNECT_REQUEST.

After the connection establishment phase, the master QoT node requests for con-

nection if there is any available transport shared with the remote node.

Parameters:

share The shared transport over which the QoT node requests the connection to be

established.

dst The address of the remote device.

B.31.3.9 void QoTNode::dataSend (DevTabEntry∗ entry)

QOT_DATA_SEND.

Upon receiving the connect accept from the slave node, the master QoT node starts

to transmit data packet by this function.

Parameters:

entry The Remote Device Table entry for this connection.

107

www.manaraa.com

B.31.3.10 void QoTNode::dataSync (DevTabEntry∗ entry)

QOT_DATA_SYNC_POINT.

Once the master node found that the send buffer is full, it requests a data synchro-

nization through this function.

Parameters:

entry The Remote Device Table entry for this connection.

B.31.3.11 void QoTNode::devDiscover (nsaddr_tdst)

Discover remote device.

Upon receiving a session layer data packet, the QoT node checks if there exists a

connection for the this packet destination. If not, QoT initiates a remote device discovery

process to establish a connection for this packet.

Parameters:

dst The address of the remote deice.

B.31.3.12 void QoTNode::disconnectAccept (sharedT∗ share, nsaddr_t dst)

QOT_DISCONNECT_ACCEPT.

The slave QoT node accepts the disconnect request.

Parameters:

share The shared transport that this request was received.

dst The address of the remote device.

108

www.manaraa.com

B.31.3.13 void QoTNode::disconnectRequest (sharedT∗ share, nsaddr_t dst)

QOT_DISCONNECT_REQUEST.

The master QoT node requests to disconnect the data transfer.

Parameters:

share The shared transport that this request is sent over.

dst The address of the remote device.

B.31.3.14 void QoTNode::downRecv (intsize, AppData ∗ appdata, const char∗

flags= 0)

Receive a packet from the session layer protocol.

Upon receiving a packet from the session layer, QoT first checks if there already

exists a connection for this packet. If so, QoT node directlymoves the packet of corre-

sponding send buffer, where the session layer packet is segmented into QoT data packets.

If not, QoT node temporary stores it in its receive buffer, and starts establishing the con-

nection.

Parameters:

size The size of the session layer data packet.

appdataPointer to the AppData.

flags Pakcet flags.

B.31.3.15 transport_stack∗ QoTNode::get_trans_by_tag (char∗ s)

Retrieve a transport stack according to the provided string.

Parameters:

s String that identifis the type of the transport stack, such asWIFI or BT.

109

www.manaraa.com

B.31.3.16 nsaddr_t QoTNode::getDest ()[inline]

Retrieve the address of the remote device.

B.31.3.17 hdr_qot∗ QoTNode::getDummy () [inline]

Retrieve the QoT header stored in the dummy_.

B.31.3.18 transport_stack∗ QoTNode::getStack (char∗ tag)

Retrieve a transport stack of the QoT node.

Parameters:

tag String that identifies the type of the transport, such as WIFIor BT.

Returns:

The pointer to the transport stack of the specified type.

B.31.3.19 void QoTNode::linkBreak (Packet∗ p)

Link break handler.

Each QoT packet includes a pointer to this function. In case of a link break, this

function is called.

Parameters:

p The packet that was being sent when the link was broken.

110

www.manaraa.com

B.31.3.20 void QoTNode::printLocation ()

Print the coordiates of the transports of this QoT node.

B.31.3.21 void QoTNode::printQoTPacket (hdr_qot∗ hdr)

Print QoT packet information.

A QoT helper function. Output the content of a QoT packet to standard output.

Parameters:

hdr The header of the QoT packet that is to be printed.

B.31.3.22 void QoTNode::recv (Packet∗ p, transport_stack ∗ stack)

Receive incoming packets.

the main entrance of a QoT node. Handle incoming packets fromunderlying pro-

tocols.

Parameters:

p The pointer to the received packet.

stack The transport stack over which the packet is received.

B.31.3.23 void QoTNode::resumeAccept (DevTabEntry∗ entry, nsaddr_t dst)

QOT_RESUME_ACCEPT.

The slave QoT node accepts the resume request.

Parameters:

entry The Remote Device Table entry for this connection.

111

www.manaraa.com

dst The address of the remote device.

B.31.3.24 void QoTNode::resumeReject (sharedT∗ share, nsaddr_t dst)

QOT_RESUME_REJECT.

The slave QoT node rejects the resume request.

Parameters:

entry The Remote Device Table entry for this connection.

dst The address of the remote device.

B.31.3.25 void QoTNode::resumeRequest (DevTabEntry∗ entry, nsaddr_t dst)

QOT_RESUME_REQUEST.

After a downgrade transport switching, the master QoT node request to resume the

data transfer.

Parameters:

entry The Remote Device Table entry for this connection.

dst The address of the remote device.

B.31.3.26 void QoTNode::sendDown (transport_stack∗ s)

Send a QoT packet down to the underlying protocol.

Parameters:

s The transport stack that is used to send the packet.

112

www.manaraa.com

B.31.3.27 void QoTNode::setApp (Application∗ app) [inline]

Set the pointer to the session layer protocol.

B.31.3.28 void QoTNode::setDummy (hdr_qot∗ hdr)

Set the dummy_.

B.31.3.29 void QoTNode::setTPM (QTPM∗ tpm) [inline]

Set the pointer to a TPM module.

B.31.3.30 void QoTNode::switchAccept (sharedT∗ share, nsaddr_t dst)

QOT_SWITCH_ACCEPT.

The slave QoT node accepts the transport switching request.

Parameters:

share The shared transport that the data traffic is going to be switched to.

dst The address of the remote device.

B.31.3.31 void QoTNode::switchQuery (DevTabEntry∗ entry, SwitchType type)

QOT_SWITCH_QUERY.

Before an upgrade transport switching, the master QoT node first query the avail-

ability of the desired transport.

113

www.manaraa.com

Parameters:

entry The Remote Device Table for this connection.

type Transport switching type.

B.31.3.32 void QoTNode::switchQueryResponse (DevTabEntry ∗ entry, nsaddr_t

dst)

QOT_SWITCH_QUERY_RESPONSE.

Upon successfully received a switch query message, the slave QoT node responses

by this function.

Parameters:

entry The Remote Device Table for this connection.

dst The address of the remote device.

B.31.3.33 void QoTNode::switchReject (sharedT∗ share, nsaddr_t dst)

QOT_SWITCH_REJECT.

The slave QoT node rejects the transport switching request.

Parameters:

share The shared transport over which the request was received.

dst The address of the remote device.

B.31.3.34 void QoTNode::switchRequest (sharedT∗ share, nsaddr_t dst)

QOT_SWITCH_REQUEST.

114

www.manaraa.com

Upon receiving the QOT_SWITCH_QUERY_RESPONSE, the masterQoT node

requests a transport switching over the new transport.

Parameters:

share The shared transport that the data traffic is going to be switched to.

dst The address of the remote device.

B.31.3.35 void QoTNode::transInfoQuery (sharedT∗ share, nsaddr_t dst)

QOT_TRANSPORT_INFO_QUERY.

The master QoT node conducts periodic transport availability queries on all the

shared transports.

Parameters:

share The shared transport that is to be queried.

dst The address of the queried transport on the remote device.

B.31.3.36 void QoTNode::transInfoQueryResponse (Packet∗ p, transport_stack ∗

stack, double request, doublesignal, int count)

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

Upon receiving a periodic transport availability query, the slave QoT node sends a

response message.

Parameters:

p The received packet.

stack The transport stack that the query message was received.

signal The signal request.

115

www.manaraa.com

count The sequence number for this query message. Used to examine if the query

message has expired.

B.31.3.37 void QoTNode::transQuery (nsaddr_tdst, transport_stack ∗ stack)

QOT_TRANSPORT_QUERY.

During the process of connection establishment, the masterQoT node queries all

the supported transport to find out the shared transports with the remote device.

Parameters:

dst The address of the remote device.

stack The transport stack that is to be queried.

B.31.3.38 void QoTNode::transQueryResponse (Packet∗ p, transport_stack ∗

stack)

QOT_TRANSPORT_QUERY_RESPONSE.

Upon receiving a transport query message from the master QoTnode, the slave

QoT node sends a response message.

Parameters:

p The received packet.

stack The transport stack through which the transport query message is received.

B.31.4 Friends And Related Function Documentation

116

www.manaraa.com

B.31.4.1 friend class AccessQueryAgent[friend]

B.31.4.2 friend class Agent [friend]

B.31.4.3 friend class Application [friend]

B.31.4.4 friend class DevTabEntry [friend]

B.31.4.5 friend class QoTBrain [friend]

B.31.4.6 friend class QoTOutQueue[friend]

B.31.4.7 friend class QoTQueryTimer [friend]

B.31.4.8 friend class StatTimer [friend]

117

www.manaraa.com

B.31.4.9 friend class TransportQueryTimer [friend]

B.31.5 Member Data Documentation

B.31.5.1 agent_value QoTNode::agent_v[private]

B.31.5.2 Application∗ QoTNode::app_ [private]

Pointer to the attached session layer protocol.

B.31.5.3 QoTBrain∗ QoTNode::brain [private]

Pointer to the QoT brain.

B.31.5.4 int QoTNode::busy_

The flag that identifies if the QoT node is performing transport availability query.

B.31.5.5 CallBack∗ QoTNode::call_back_h [private]

Head of the callback link list.

118

www.manaraa.com

B.31.5.6 CallBack∗ QoTNode::call_back_t [private]

Tail of the callback link list.

B.31.5.7 int QoTNode::do_query [private]

B.31.5.8 nsaddr_t QoTNode::dst_[private]

The address of the remote device.

B.31.5.9 hdr_qot∗ QoTNode::dummy_ [private]

The buffer that transfers QoT packet header information to the transport agent when

it creates a packet.

B.31.5.10 RDT∗ QoTNode::rd_table [private]

Pointer to the Remote Device Table.

B.31.5.11 QoTQueue∗ QoTNode::recv_buff [private]

QoT receive buffer.

119

www.manaraa.com

B.31.5.12 StatTimer∗ QoTNode::s_timer

Statistical timer.

B.31.5.13 QTPM∗ QoTNode::tpm_ [private]

Pointer to a TPM module.

B.31.5.14 TransportQueryTimer∗ QoTNode::tq_timer [private]

Transport query timer.

B.31.5.15 transport_stack∗ QoTNode::trans_head [private]

Head of the transport stack link list.

B.31.5.16 int QoTNode::transport_nn [private]

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

120

www.manaraa.com

B.32 QoTOutQueue Class Reference

The send queue within a QoT node.

#include <qot.h>

Inherits QoTQueue.

Inheritance diagram for QoTOutQueue:Collaboration diagram for QoTOutQueue:

Public Member Functions

• QoTOutQueue (DevTabEntry∗entry)

Class constructor.

• int enque (app_data∗d)

Enqueue the session layer packets into the queue.

• void send ()

Send the QoT packets in the send buffer.

• void deque (unsigned id)

Dequeue the acknowledged packets in the queue.

• void insertSend (hdr_qot∗hdr)

• hdr_qot∗ getNext ()

Return the next available packet.

• void set_entry (DevTabEntry∗entry)

Set the pointer entry_ to an entry in the Remote Device Table.

121

www.manaraa.com

• int my_credit ()

• void setCredit (unsigned credit)

• int check_infinite_send ()

• app_data∗ check_app_buff ()

Return the pointer to app_buff.

• unsigned getPktID ()

Return the next available QoT packet ID.

• void syncCheck (unsigned id)

The synchronization check at the QoT layer of the sending node.

• void requestSync ()

Request data synchronization.

• void flushQueue ()

Private Member Functions

• hdr_qot∗ remove_head ()

Remote queue head.

• int createHdr (int size, app_data∗data)

Create a new QoT packet.

• void retransmit ()

Retransmit the packets in the send buffer.

122

www.manaraa.com

Private Attributes

• int infinite_send_

Infinite data available to send.

• app_data∗ app_buff

A buffer for app_data.

• DevTabEntry∗ entry_

Pointer to the entry that this queue belongs to in the Remote Device Table.

• hdr_qot∗ head_

Head of the queue.

• hdr_qot∗ tail_

Tail of the queue.

• hdr_qot∗ send_

Pointer to the QoT data packet that is ready to be sent next.

• unsigned qot_pkt_id

QoT data packet id.

• int credit_

Friends

• class DevTabEntry

• class QoTNode

123

www.manaraa.com

B.32.1 Detailed Description

The send queue within a QoT node.

QoT node creates a send queue for each connection when dealing with reliable

transport protocol type, such as TCP.

B.32.2 Constructor & Destructor Documentation

B.32.2.1 QoTOutQueue::QoTOutQueue (DevTabEntry∗ entry)

Class constructor.

B.32.3 Member Function Documentation

B.32.3.1 app_data∗ QoTOutQueue::check_app_buff () [inline]

Return the pointer to app_buff.

B.32.3.2 int QoTOutQueue::check_infinite_send ()[inline]

If the traffic generator is FTP, this flag is set to 1.

B.32.3.3 int QoTOutQueue::createHdr (intsize, app_data∗ data) [private]

Create a new QoT packet.

In ns-2, data packets are actually created at the transport layer, TCP or UDP. This

function virtually creates a new QoT packet in the sense thatthe packet is not actually

124

www.manaraa.com

created here. In stead, this function creates a new QoT header structure, and fills corre-

sponding fields. When the data packet is actually created at the transport layer, the QoT

header created here is copied to the packet.

Parameters:

size The size of the QoT data packet.

data The app_data buffer that stores the destination address of the session layer data

packets.

Returns:

return 1 if the queue is already full, 0 otherwise.

B.32.3.4 void QoTOutQueue::deque (unsignedid)

Dequeue the acknowledged packets in the queue.

Parameters:

id The sequence number of the packet that the receiving node last received.

B.32.3.5 int QoTOutQueue::enque (app_data∗ d) [virtual]

Enqueue the session layer packets into the queue.

Session layer packets are segmented to fit the size of QoT packets before enqueue

into the send buffer.

Reimplemented from QoTQueue.

B.32.3.6 void QoTOutQueue::flushQueue ()

125

www.manaraa.com

B.32.3.7 hdr_qot∗ QoTOutQueue::getNext ()

Return the next available packet.

Return the packet that is pointed by send_ if it is not equal toNULL, otherwise

return NULL. If send_ is not equal to NULL, it moves towards tail_ for one packet.

B.32.3.8 unsigned QoTOutQueue::getPktID () [inline]

Return the next available QoT packet ID.

QoT assigns a sequence number to each data packet.

B.32.3.9 void QoTOutQueue::insertSend (hdr_qot∗ hdr)

The inserted packet will be the next available packet to send.

B.32.3.10 int QoTOutQueue::my_credit () [inline]

B.32.3.11 hdr_qot∗ QoTOutQueue::remove_head () [private]

Remote queue head.

Removes the head of the queue. Returns the original queue head.

Returns:

hdr_qot The QoT data packet that was the head of the queue.

Reimplemented from QoTQueue.

B.32.3.12 void QoTOutQueue::requestSync ()

Request data synchronization.

126

www.manaraa.com

The QoT layer at the sending node requests a data synchronization once its send

buffer is full.

B.32.3.13 void QoTOutQueue::retransmit () [private]

Retransmit the packets in the send buffer.

Retransmit the un-acknowledged and new packets.

B.32.3.14 void QoTOutQueue::send ()

Send the QoT packets in the send buffer.

Once the send buffer is full, the QoT layer on the sending noderequests a data

synchronization to release the acknowledged packets.

B.32.3.15 void QoTOutQueue::set_entry (DevTabEntry∗ entry) [inline]

Set the pointer entry_ to an entry in the Remote Device Table.

B.32.3.16 void QoTOutQueue::setCredit (unsignedcredit) [inline]

B.32.3.17 void QoTOutQueue::syncCheck (unsignedid)

The synchronization check at the QoT layer of the sending node.

The QoT layer at the sending node requests a data synchronization once its send

buffer is full. Upon receiving the synchronization packet from the receiving node, QoT

removes acknowledged packets in its send buffer. If new slots are available in the send

buffer after the data synchronization, QoT moves the bufferwindow and continue sending

new packets.

127

www.manaraa.com

Parameters:

id The sequence number of the packet that the QoT layer on the receiving node last

received.

B.32.4 Friends And Related Function Documentation

B.32.4.1 friend class DevTabEntry [friend]

B.32.4.2 friend class QoTNode[friend]

B.32.5 Member Data Documentation

B.32.5.1 app_data∗ QoTOutQueue::app_buff [private]

A buffer for app_data.

This buffer is used to store a app_data information, which isused in case of infinite

send of session layer traffic.

B.32.5.2 int QoTOutQueue::credit_ [private]

B.32.5.3 DevTabEntry∗ QoTOutQueue::entry_ [private]

Pointer to the entry that this queue belongs to in the Remote Device Table.

128

www.manaraa.com

B.32.5.4 hdr_qot∗ QoTOutQueue::head_ [private]

Head of the queue.

Reimplemented from QoTQueue.

B.32.5.5 int QoTOutQueue::infinite_send_ [private]

Infinite data available to send.

B.32.5.6 unsigned QoTOutQueue::qot_pkt_id [private]

QoT data packet id.

Starts from 0.

B.32.5.7 hdr_qot∗ QoTOutQueue::send_ [private]

Pointer to the QoT data packet that is ready to be sent next.

B.32.5.8 hdr_qot∗ QoTOutQueue::tail_ [private]

Tail of the queue.

Reimplemented from QoTQueue.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

129

www.manaraa.com

B.33 QoTPacket Union Reference

Qot packet type.

#include <hdr.h>

Collaboration diagram for QoTPacket:

Public Attributes

• qot_con_req con_req

QOT_CONNECT_REQUEST.

• qot_con_acc con_acc

QOT_CONNECT_ACCEPT.

• qot_con_rej con_rej

QOT_CONNECT_REJECT.

• qot_discon_req discon_req

QOT_DISCONNECT_REQUEST.

• qot_discon_acc discon_acc

QOT_DISCONNECT_ACCEPT.

• qot_data_snd data_snd

QOT_DATA_SEND.

• qot_data_sync_pnt data_sync_pnt

130

www.manaraa.com

QOT_DATA_SYNC_POINT.

• qot_data_sync_req data_sync_req

QOT_DATA_SYNC_REQUEST.

• qot_swh_qry swh_qry

QOT_SWITCH_QUERY.

• qot_swh_qry_rep swh_qry_rep

QOT_SWITCH_QUERY_RESPONSE.

• qot_swh_req swh_req

QOT_SWITCH_REQUEST.

• qot_swh_acc swh_acc

QOT_SWITCH_ACCEPT.

• qot_swh_rej swh_rej

QOT_SWITCH_REJECT.

• qot_rem_req rem_req

QOT_RESUME_REQUEST.

• qot_rem_acc rem_acc

QOT_RESUME_ACCEPT.

• qot_rem_rej rem_rej

QOT_RESUME_REJECT.

131

www.manaraa.com

• qot_trans_qry trans_qry

QOT_TRANSPORT_QUERY.

• qot_trans_qry_rep trans_qry_rep

QOT_TRANSPORT_QUERY_RESPONSE.

• qot_trans_info_qry trans_info_qry

QOT_TRANSPORT_INFO_QUERY.

• qot_trans_info_qry_rep trans_info_qry_rep

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

B.33.1 Detailed Description

Qot packet type.

B.33.2 Member Data Documentation

B.33.2.1 qot_con_acc QoTPacket::con_acc

QOT_CONNECT_ACCEPT.

B.33.2.2 qot_con_rej QoTPacket::con_rej

QOT_CONNECT_REJECT.

132

www.manaraa.com

B.33.2.3 qot_con_req QoTPacket::con_req

QOT_CONNECT_REQUEST.

B.33.2.4 qot_data_snd QoTPacket::data_snd

QOT_DATA_SEND.

B.33.2.5 qot_data_sync_pnt QoTPacket::data_sync_pnt

QOT_DATA_SYNC_POINT.

B.33.2.6 qot_data_sync_req QoTPacket::data_sync_req

QOT_DATA_SYNC_REQUEST.

B.33.2.7 qot_discon_acc QoTPacket::discon_acc

QOT_DISCONNECT_ACCEPT.

B.33.2.8 qot_discon_req QoTPacket::discon_req

QOT_DISCONNECT_REQUEST.

133

www.manaraa.com

B.33.2.9 qot_rem_acc QoTPacket::rem_acc

QOT_RESUME_ACCEPT.

B.33.2.10 qot_rem_rej QoTPacket::rem_rej

QOT_RESUME_REJECT.

B.33.2.11 qot_rem_req QoTPacket::rem_req

QOT_RESUME_REQUEST.

B.33.2.12 qot_swh_acc QoTPacket::swh_acc

QOT_SWITCH_ACCEPT.

B.33.2.13 qot_swh_qry QoTPacket::swh_qry

QOT_SWITCH_QUERY.

B.33.2.14 qot_swh_qry_rep QoTPacket::swh_qry_rep

QOT_SWITCH_QUERY_RESPONSE.

134

www.manaraa.com

B.33.2.15 qot_swh_rej QoTPacket::swh_rej

QOT_SWITCH_REJECT.

B.33.2.16 qot_swh_req QoTPacket::swh_req

QOT_SWITCH_REQUEST.

B.33.2.17 qot_trans_info_qry QoTPacket::trans_info_qry

QOT_TRANSPORT_INFO_QUERY.

B.33.2.18 qot_trans_info_qry_rep QoTPacket::trans_info_qry_rep

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

B.33.2.19 qot_trans_qry QoTPacket::trans_qry

QOT_TRANSPORT_QUERY.

B.33.2.20 qot_trans_qry_rep QoTPacket::trans_qry_rep

QOT_TRANSPORT_QUERY_RESPONSE.

The documentation for this union was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

135

www.manaraa.com

B.34 QoTQueue Class Reference

the super class for the receive and send buffers within a QoT node.

#include <qot.h>

Inherited by QoTOutQueue.

Inheritance diagram for QoTQueue:Collaboration diagram for QoTQueue:

Public Member Functions

• QoTQueue (QoTNode∗node)

Class constructore.

• virtual void enque (app_data∗data)

Enqueue the received session layer packets into the queue.

• virtual app_data∗ deque (void)

Dequeue a packets from the queue.

• int removePktWithDst (DevTabEntry∗entry)

Remove packets according to a destination from the queue.

• int len ()

Returns the length of the queue.

Protected Attributes

• int len_

136

www.manaraa.com

The length of the queue.

• int limit_

The maximum length of the queue allowed.

• double timeout_

Private Member Functions

• app_data∗ remove_head ()

Removes the head of the queue, returns the original head of the queue.

• void purge (void)

• void verifyQueue (void)

Private Attributes

• QoTNode∗ node_

The linakge to the QoT node that this queue belongs to.

• app_data∗ head_

The head of the queue.

• app_data∗ tail_

The tail of teh queue.

B.34.1 Detailed Description

the super class for the receive and send buffers within a QoT node.

137

www.manaraa.com

B.34.2 Constructor & Destructor Documentation

B.34.2.1 QoTQueue::QoTQueue (QoTNode∗ node)

Class constructore.

B.34.3 Member Function Documentation

B.34.3.1 virtual app_data∗ QoTQueue::deque (void) [virtual]

Dequeue a packets from the queue.

B.34.3.2 virtual void QoTQueue::enque (app_data∗ data) [virtual]

Enqueue the received session layer packets into the queue.

Reimplemented in QoTOutQueue.

B.34.3.3 int QoTQueue::len () [inline]

Returns the length of the queue.

B.34.3.4 void QoTQueue::purge (void) [private]

138

www.manaraa.com

B.34.3.5 app_data∗ QoTQueue::remove_head () [private]

Removes the head of the queue, returns the original head of the queue.

Reimplemented in QoTOutQueue.

B.34.3.6 int QoTQueue::removePktWithDst (DevTabEntry∗ entry)

Remove packets according to a destination from the queue.

After a QoT node established a connection with a remote node,it removes session

layer packets that are destined to the remote node from the receive buffer, and insert the

packets into the corresponding send buffer.

Parameters:

entry The entry in the Remote Device Table for this connection. QoTnode retrives

the destination address from this entry.

B.34.3.7 void QoTQueue::verifyQueue (void)[private]

B.34.4 Member Data Documentation

B.34.4.1 app_data∗ QoTQueue::head_ [private]

The head of the queue.

Reimplemented in QoTOutQueue.

B.34.4.2 int QoTQueue::len_ [protected]

The length of the queue.

139

www.manaraa.com

B.34.4.3 int QoTQueue::limit_ [protected]

The maximum length of the queue allowed.

B.34.4.4 QoTNode∗ QoTQueue::node_ [private]

The linakge to the QoT node that this queue belongs to.

B.34.4.5 app_data∗ QoTQueue::tail_ [private]

The tail of teh queue.

Reimplemented in QoTOutQueue.

B.34.4.6 double QoTQueue::timeout_[protected]

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

140

www.manaraa.com

B.35 QTPM Class Reference

QoT TPM module.

#include <qot.h>

Collaboration diagram for QTPM:

Public Member Functions

• QTPM ()

Class constructor.

• virtual void sendmsg (int sz, AppData∗d, const char∗flags=0)

Send message down.

• virtual void sendmsg (int nbytes, const char∗flags=0)

Send message down.

• void setNode (QoTNode∗node)

Set pointer to the attached QoT node.

Public Attributes

• int i

Protected Member Functions

• int command (int argc, const char∗const∗argv)

141

www.manaraa.com

Tcl-C++ interfacing function.

Private Attributes

• QoTNode∗ node_

Pointer to the QoT node that this TPM is attached to.

B.35.1 Detailed Description

QoT TPM module.

B.35.2 Constructor & Destructor Documentation

B.35.2.1 QTPM::QTPM ()

Class constructor.

B.35.3 Member Function Documentation

B.35.3.1 int QTPM::command (int argc, const char∗const∗ argv) [protected]

Tcl-C++ interfacing function.

142

www.manaraa.com

B.35.3.2 virtual void QTPM::sendmsg (int nbytes, const char∗ flags= 0)

[virtual]

Send message down.

This function is used by application layer to send data down.

Parameters:

nbytes The size of the packet.

flags Flags

B.35.3.3 virtual void QTPM::sendmsg (intsz, AppData ∗ d, const char∗ flags= 0)

[virtual]

Send message down.

This function is used by application layer to send data down.

Parameters:

sz The size of the packet.

d AppData

flags Flags

B.35.3.4 void QTPM::setNode (QoTNode∗ node) [inline]

Set pointer to the attached QoT node.

B.35.4 Member Data Documentation

143

www.manaraa.com

B.35.4.1 int QTPM::i

B.35.4.2 QoTNode∗ QTPM::node_ [private]

Pointer to the QoT node that this TPM is attached to.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

144

www.manaraa.com

B.36 RDT Class Reference

Remote Device Table.

#include <qot.h>

Collaboration diagram for RDT:

Public Member Functions

• RDT ()

Class constructor.

• void setnode (QoTNode∗node)

Set the pointer to the QoT node that this table belongs to.

• QoTNode∗ node ()

Retrieve the pointer to the QoT node that this table belongs to.

• DevTabEntry∗ getTabEntry (nsaddr_t id)

Retrieve the table entry identified by the remote device ID.

• DevTabEntry∗ checkTabEntry (nsaddr_t id)

Check if there exists a table entry with the specified remote device ID.

• int removeTabEntry (nsaddr_t id)

Remove the table entry from the link list.

• QoTBrain∗ getBrain ()

145

www.manaraa.com

Return the pointer to the QoTBrain of the QoT node.

Private Member Functions

• DevTabEntry∗ createTabEntry (nsaddr_t id)

Create a table entry with the specified remote address in the table.

Private Attributes

• DevTabEntry∗ head_

Head of the table entry link list.

• DevTabEntry∗ tail_

Tail of the table entry link list.

• QoTNode∗ node_

Pointer to the QoT node that this table belongs to.

• QoTBrain∗ brain_

Pointer to the QoTBrain of the QoT node.

Friends

• class QoTNode

B.36.1 Detailed Description

Remote Device Table.

146

www.manaraa.com

B.36.2 Constructor & Destructor Documentation

B.36.2.1 RDT::RDT () [inline]

Class constructor.

B.36.3 Member Function Documentation

B.36.3.1 DevTabEntry∗ RDT::checkTabEntry (nsaddr_t id)

Check if there exists a table entry with the specified remote device ID.

B.36.3.2 DevTabEntry∗ RDT::createTabEntry (nsaddr_t id) [private]

Create a table entry with the specified remote address in the table.

Parameters:

id The address of the remote device of the connection.

Returns:

The handler to the table entry with the specified remote device address.

B.36.3.3 QoTBrain∗ RDT::getBrain () [inline]

Return the pointer to the QoTBrain of the QoT node.

147

www.manaraa.com

B.36.3.4 DevTabEntry∗ RDT::getTabEntry (nsaddr_t id)

Retrieve the table entry identified by the remote device ID.

Return the table entry identified by the remote device ID. If no such entry exists,

create one.

Parameters:

id The address and port number of the remote device.

Returns:

The pointer to the table entry identified by the specified ID.

B.36.3.5 QoTNode∗ RDT::node () [inline]

Retrieve the pointer to the QoT node that this table belongs to.

B.36.3.6 int RDT::removeTabEntry (nsaddr_t id)

Remove the table entry from the link list.

Parameters:

id The address and port number of the remote device.

Returns:

0 for successful removal, 1 otherwise.

B.36.3.7 void RDT::setnode (QoTNode∗ node) [inline]

Set the pointer to the QoT node that this table belongs to.

148

www.manaraa.com

B.36.4 Friends And Related Function Documentation

B.36.4.1 friend class QoTNode[friend]

B.36.5 Member Data Documentation

B.36.5.1 QoTBrain∗ RDT::brain_ [private]

Pointer to the QoTBrain of the QoT node.

B.36.5.2 DevTabEntry∗ RDT::head_ [private]

Head of the table entry link list.

B.36.5.3 QoTNode∗ RDT::node_ [private]

Pointer to the QoT node that this table belongs to.

B.36.5.4 DevTabEntry∗ RDT::tail_ [private]

Tail of the table entry link list.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

149

www.manaraa.com

B.37 sharedT Struct Reference

Shared transport between two communicating QoT nodes.

#include <qot.h>

Collaboration diagram for sharedT:

Public Member Functions

• int getCount ()

Return the value of the current query sequency number.

• void incrCount ()

Increment the value of the query sequency number by 1.

Public Attributes

• char∗ tag_

The type of this transport, such as WIFI, BT, WUSB or ZIGBEE.

• transport_stack∗ stack_

The pointer to the actual transport stack.

• ns_addr_t dest_

The address and the port number of the same type of transport on the receiving node.

• u_char qresults_

• double query_interval_

150

www.manaraa.com

The query interval for this transport.

• double power_consumption_

The power consumption of this transport, in watts.

• double radius_

The radius of the signal transmission of this transport.

• double data_rate_

The data rate that this transport can support.

• double utility_

• double throughput

The measured effective throughput of this transport.

• double delay

The measured delay on packets transmission.

• double jitter

The jitter of packets tranfer.

• double signal

The signal strength when sending packets of this transport.

• int status_

• int p_query

• int query_count

the sequence number of the transport availablility query.

151

www.manaraa.com

• QueryTimer∗ qtimer

• DevTabEntry∗ entry_

Linkage to the entry of the Remote Device Table.

• AccessQueryAgent∗ agent

Linkage to the access query agent.

• sharedT∗ prev_

Linkage to the previous shared transport.

• sharedT∗ next_

Linkage to the next shared transport.

B.37.1 Detailed Description

Shared transport between two communicating QoT nodes.

This struct records information of a shared transport between two communicating

QoT nodes.

B.37.2 Member Function Documentation

B.37.2.1 int sharedT::getCount () [inline]

Return the value of the current query sequency number.

152

www.manaraa.com

B.37.2.2 void sharedT::incrCount () [inline]

Increment the value of the query sequency number by 1.

B.37.3 Member Data Documentation

B.37.3.1 AccessQueryAgent∗ sharedT::agent

Linkage to the access query agent.

An access query agent is responsible for the decision makingrelated issues of a

QoT connection, such as predicting the availability of a shared transport and calculating

the dynamic transport query intervals.

B.37.3.2 double sharedT::data_rate_

The data rate that this transport can support.

B.37.3.3 double sharedT::delay

The measured delay on packets transmission.

B.37.3.4 ns_addr_t sharedT::dest_

The address and the port number of the same type of transport on the receiving

node.

153

www.manaraa.com

B.37.3.5 DevTabEntry∗ sharedT::entry_

Linkage to the entry of the Remote Device Table.

The QoT node establishes an entry in the Remote Device Table for each connection.

An Entry records information of the shared transports for this connection.

B.37.3.6 double sharedT::jitter

The jitter of packets tranfer.

B.37.3.7 sharedT∗ sharedT::next_

Linkage to the next shared transport.

B.37.3.8 int sharedT::p_query

B.37.3.9 double sharedT::power_consumption_

The power consumption of this transport, in watts.

B.37.3.10 sharedT∗ sharedT::prev_

Linkage to the previous shared transport.

The shared transports of this QoT connection are linked together under the corre-

sponding entry in the Remote Device Table.

154

www.manaraa.com

B.37.3.11 u_char sharedT::qresults_

B.37.3.12 QueryTimer∗ sharedT::qtimer

B.37.3.13 int sharedT::query_count

the sequence number of the transport availablility query.

This sequence number is used to exam if a received transport availability query has

been expired or not.

B.37.3.14 double sharedT::query_interval_

The query interval for this transport.

B.37.3.15 double sharedT::radius_

The radius of the signal transmission of this transport.

B.37.3.16 double sharedT::signal

The signal strength when sending packets of this transport.

B.37.3.17 transport_stack∗ sharedT::stack_

The pointer to the actual transport stack.

155

www.manaraa.com

B.37.3.18 int sharedT::status_

B.37.3.19 char∗ sharedT::tag_

The type of this transport, such as WIFI, BT, WUSB or ZIGBEE.

B.37.3.20 double sharedT::throughput

The measured effective throughput of this transport.

B.37.3.21 double sharedT::utility_

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

156

www.manaraa.com

B.38 stack_bt Struct Reference

Pointers to transport stacks of Bluetooth.

#include <qot.h>

Public Attributes

• LL ∗ ll

• BNEP∗ bnep

• L2CAP∗ l2cap

• LMP ∗ lmp

• Baseband∗ bb

B.38.1 Detailed Description

Pointers to transport stacks of Bluetooth.

B.38.2 Member Data Documentation

B.38.2.1 Baseband∗ stack_bt::bb

B.38.2.2 BNEP∗ stack_bt::bnep

157

www.manaraa.com

B.38.2.3 L2CAP∗ stack_bt::l2cap

B.38.2.4 LL∗ stack_bt::ll

B.38.2.5 LMP∗ stack_bt::lmp

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

158

www.manaraa.com

B.39 stack_wifi Struct Reference

Pointers to transport stacks of WiFi.

#include <qot.h>

Public Attributes

• LL ∗ ll

• PriQueue∗ ifq

• WirelessChannel∗ channel

B.39.1 Detailed Description

Pointers to transport stacks of WiFi.

B.39.2 Member Data Documentation

B.39.2.1 WirelessChannel∗ stack_wifi::channel

B.39.2.2 PriQueue∗ stack_wifi::ifq

B.39.2.3 LL∗ stack_wifi::ll

The documentation for this struct was generated from the following file:

159

www.manaraa.com

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

160

www.manaraa.com

B.40 stack_wusb Struct Reference

Pointers to transport stacks of WUSB.

#include <qot.h>

Public Attributes

• LL ∗ ll

• PriQueue∗ ifq

• WirelessChannel∗ channel

B.40.1 Detailed Description

Pointers to transport stacks of WUSB.

B.40.2 Member Data Documentation

B.40.2.1 WirelessChannel∗ stack_wusb::channel

B.40.2.2 PriQueue∗ stack_wusb::ifq

B.40.2.3 LL∗ stack_wusb::ll

The documentation for this struct was generated from the following file:

161

www.manaraa.com

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

162

www.manaraa.com

B.41 stack_zigbee Struct Reference

Pointers to transport stacks of ZigBee.

#include <qot.h>

Public Attributes

• LL ∗ ll

• PriQueue∗ ifq

• WirelessChannel∗ channel

B.41.1 Detailed Description

Pointers to transport stacks of ZigBee.

B.41.2 Member Data Documentation

B.41.2.1 WirelessChannel∗ stack_zigbee::channel

B.41.2.2 PriQueue∗ stack_zigbee::ifq

B.41.2.3 LL∗ stack_zigbee::ll

The documentation for this struct was generated from the following file:

163

www.manaraa.com

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

164

www.manaraa.com

B.42 StatTimer Class Reference

Statistical timer.

#include <qot.h>

Collaboration diagram for StatTimer:

Public Member Functions

• StatTimer (QoTNode∗n)

Class constructor.

• void printThroughput ()

Output the throughput statistical results to a file.

• void printPower ()

Output the power consumption statistical results to a file.

Protected Member Functions

• void expire (Event∗e)

Protected Attributes

• QoTNode∗ node

Pointer to the QoT node that this timer belongs to.

• double interval

165

www.manaraa.com

The time interval that this timer collects data.

• int t

A temporary variable to save cumulative throughput.

• double p

A temporary variable to save cumulative power consumption.

• char∗ tag

• throughput∗ t_head

Link list head for collected throughput data.

• throughput∗ t_tail

Link list tail for collected throughput data.

• p_consumption∗ p_head

Link list head for collected power consumption data.

• p_consumption∗ p_tail

Link list tail for collected power consumption data.

Friends

• class QoTNode

B.42.1 Detailed Description

Statistical timer.

Collect the throughput and the power consumption over time at the QoT layer.

166

www.manaraa.com

B.42.2 Constructor & Destructor Documentation

B.42.2.1 StatTimer::StatTimer (QoTNode∗ n) [inline]

Class constructor.

Parameters:

n Pointer to the QoT node that this timer belongs to.

B.42.3 Member Function Documentation

B.42.3.1 void StatTimer::expire (Event∗ e) [protected]

Parameters:

e Event handler.

B.42.3.2 void StatTimer::printPower ()

Output the power consumption statistical results to a file.

B.42.3.3 void StatTimer::printThroughput ()

Output the throughput statistical results to a file.

B.42.4 Friends And Related Function Documentation

167

www.manaraa.com

B.42.4.1 friend class QoTNode[friend]

B.42.5 Member Data Documentation

B.42.5.1 double StatTimer::interval [protected]

The time interval that this timer collects data.

B.42.5.2 QoTNode∗ StatTimer::node [protected]

Pointer to the QoT node that this timer belongs to.

B.42.5.3 double StatTimer::p [protected]

A temporary variable to save cumulative power consumption.

B.42.5.4 p_consumption∗ StatTimer::p_head [protected]

Link list head for collected power consumption data.

B.42.5.5 p_consumption∗ StatTimer::p_tail [protected]

Link list tail for collected power consumption data.

168

www.manaraa.com

B.42.5.6 int StatTimer::t [protected]

A temporary variable to save cumulative throughput.

B.42.5.7 throughput∗ StatTimer::t_head [protected]

Link list head for collected throughput data.

B.42.5.8 throughput∗ StatTimer::t_tail [protected]

Link list tail for collected throughput data.

B.42.5.9 char∗ StatTimer::tag [protected]

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

169

www.manaraa.com

B.43 TAM Class Reference

QoT TAM module.

#include <qot.h>

Collaboration diagram for TAM:

Public Member Functions

• TAM ()

Class constructor.

• void recv (int nbytes, Packet∗p)

Receive packets from the underlying transport layer.

• transport_stack∗ transport ()

Retrieve the pointer to the attached transport.

• void setTran (transport_stack∗t)

Set the pointer to the the attached transport.

• void setNode (QoTNode∗node)

Set the pointer to the attached QoT node.

• hdr_qot∗ get_pkt_hdr ()

Retrieve the QoT header stored in the dummy_ of the QoT node.

• void clearDummy ()

170

www.manaraa.com

Clear the dummy_ field in the QoT node.

Private Attributes

• QoTNode∗ node_

Pointer to the attached QoT node.

• transport_stack∗ tran

Pointer to the underlying transport agent.

B.43.1 Detailed Description

QoT TAM module.

B.43.2 Constructor & Destructor Documentation

B.43.2.1 TAM::TAM ()

Class constructor.

B.43.3 Member Function Documentation

B.43.3.1 void TAM::clearDummy () [inline]

Clear the dummy_ field in the QoT node.

171

www.manaraa.com

B.43.3.2 hdr_qot∗ TAM::get_pkt_hdr () [inline]

Retrieve the QoT header stored in the dummy_ of the QoT node.

B.43.3.3 void TAM::recv (int nbytes, Packet∗ p)

Receive packets from the underlying transport layer.

Parameters:

nbytes The size of the received packet.

p The pointer to the received packet.

B.43.3.4 void TAM::setNode (QoTNode∗ node) [inline]

Set the pointer to the attached QoT node.

B.43.3.5 void TAM::setTran (transport_stack ∗ t) [inline]

Set the pointer to the the attached transport.

B.43.3.6 transport_stack∗ TAM::transport () [inline]

Retrieve the pointer to the attached transport.

B.43.4 Member Data Documentation

172

www.manaraa.com

B.43.4.1 QoTNode∗ TAM::node_ [private]

Pointer to the attached QoT node.

B.43.4.2 transport_stack∗ TAM::tran [private]

Pointer to the underlying transport agent.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

173

www.manaraa.com

B.44 throughput Struct Reference

The throughput link list item used in the statistical timer.

#include <qot.h>

Collaboration diagram for throughput:

Public Attributes

• throughput∗ next

Pointer to the next item in the link list.

• double t_value

Throughput value.

• double t

The time period that the collected data correspond to.

B.44.1 Detailed Description

The throughput link list item used in the statistical timer.

B.44.2 Member Data Documentation

B.44.2.1 throughput∗ throughput::next

Pointer to the next item in the link list.

174

www.manaraa.com

B.44.2.2 double throughput::t

The time period that the collected data correspond to.

B.44.2.3 double throughput::t_value

Throughput value.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

175

www.manaraa.com

B.45 trans_info Struct Reference

Structure used in QOT_TRANSPORT_QUERY_RESPONSE.

#include <hdr.h>

Collaboration diagram for trans_info:

Public Attributes

• char∗ tag

Transport type.

• ns_addr_t me

Transport address and port.

• trans_info∗ next

B.45.1 Detailed Description

Structure used in QOT_TRANSPORT_QUERY_RESPONSE.

B.45.2 Member Data Documentation

B.45.2.1 ns_addr_t trans_info::me

Transport address and port.

176

www.manaraa.com

B.45.2.2 trans_info∗ trans_info::next

B.45.2.3 char∗ trans_info::tag

Transport type.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/hdr.h

177

www.manaraa.com

B.46 transport_stack Struct Reference

The protocol stack layer of a transport of a QoT node.

#include <qot.h>

Collaboration diagram for transport_stack:

Public Attributes

• char∗ transport_tag

Transport type tags, such as WIFI, BT, WUSB, or WUSB.

• char∗ transport_t

Transport layer protocol type, such as TCP or UDP.

• char∗ routing_t

Routing layer protocol type, such as AODV or DSR.

• Agent∗ transport_agent

The pointer to the transport layer agent.

• Agent∗ rt_agent

The pointer to the routing layer agent.

• Node∗ node

The pointer to a transport of this QoT node.

• qot_stack stack

178

www.manaraa.com

A union that contains pointers to protocol layers that are below the routing layer of a

transport.

• ns_addr_t me

The address and the port number of this transport.

• transport_stack∗ next

Linkage to the next transport of the transport link list within a QoT node.

• transport_stack∗ prev

Linkage to the previous transport of the transport link listwithin a QoT ndoe.

B.46.1 Detailed Description

The protocol stack layer of a transport of a QoT node.

In ns-2, the structures of transports maybe significantly different. A union, stack, is

used to present layers that are below the routing layer.

B.46.2 Member Data Documentation

B.46.2.1 ns_addr_t transport_stack::me

The address and the port number of this transport.

B.46.2.2 transport_stack∗ transport_stack::next

Linkage to the next transport of the transport link list within a QoT node.

179

www.manaraa.com

All transports of a QoT node are linked together.

B.46.2.3 Node∗ transport_stack::node

The pointer to a transport of this QoT node.

A transport of a QoT node is equivalent to a homogeneous node in ns-2.

B.46.2.4 transport_stack∗ transport_stack::prev

Linkage to the previous transport of the transport link listwithin a QoT ndoe.

B.46.2.5 char∗ transport_stack::routing_t

Routing layer protocol type, such as AODV or DSR.

B.46.2.6 Agent∗ transport_stack::rt_agent

The pointer to the routing layer agent.

B.46.2.7 qot_stack transport_stack::stack

A union that contains pointers to protocol layers that are below the routing layer of

a transport.

Protocol layer structures that are below the routing layer may be significantly dif-

fernt between transports of a QoT node.

180

www.manaraa.com

B.46.2.8 Agent∗ transport_stack::transport_agent

The pointer to the transport layer agent.

B.46.2.9 char∗ transport_stack::transport_t

Transport layer protocol type, such as TCP or UDP.

B.46.2.10 char∗ transport_stack::transport_tag

Transport type tags, such as WIFI, BT, WUSB, or WUSB.

The documentation for this struct was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

181

www.manaraa.com

B.47 TransportQueryTimer Class Reference

Transport query timer.

#include <qot.h>

Collaboration diagram for TransportQueryTimer:

Public Member Functions

• TransportQueryTimer (QoTNode∗n)

• void setStack (transport_stack∗s)

Set the pointer to a transport stack.

• void setID (nsaddr_t i)

Set remote device ID.

• void setEntry (DevTabEntry∗e)

Set the pointer to a Remote Device Table entry.

Protected Member Functions

• virtual void expire (Event∗e)

Protected Attributes

• QoTNode∗ node

Pointer to the QoT node that this timer belongs to.

• transport_stack∗ stack

182

www.manaraa.com

Pointer to a transport stack.

• DevTabEntry∗ entry

Pointer to a Remote Device Table entry.

• nsaddr_t remote_id

Address of the remote device.

B.47.1 Detailed Description

Transport query timer.

When establishing a connection with the remote device, the master QoT node

queries all the supported transports to find out the shared transports with the remote de-

vice. If the master QoT node doesn’t receive any response over a queried transport before

this timer expires, it marks this transport as unavailable.

B.47.2 Constructor & Destructor Documentation

B.47.2.1 TransportQueryTimer::TransportQueryTimer (Qo TNode ∗ n)

[inline]

Parameters:

n Pointer to the QoT node that this timer belongs to.

B.47.3 Member Function Documentation

183

www.manaraa.com

B.47.3.1 virtual void TransportQueryTimer::expire (Event ∗ e) [protected,

virtual]

Parameters:

e Event handler.

B.47.3.2 void TransportQueryTimer::setEntry (DevTabEntry ∗ e) [inline]

Set the pointer to a Remote Device Table entry.

B.47.3.3 void TransportQueryTimer::setID (nsaddr_t i) [inline]

Set remote device ID.

B.47.3.4 void TransportQueryTimer::setStack (transport_stack∗ s) [inline]

Set the pointer to a transport stack.

B.47.4 Member Data Documentation

B.47.4.1 DevTabEntry∗ TransportQueryTimer::entry [protected]

Pointer to a Remote Device Table entry.

184

www.manaraa.com

B.47.4.2 QoTNode∗ TransportQueryTimer::node [protected]

Pointer to the QoT node that this timer belongs to.

B.47.4.3 nsaddr_t TransportQueryTimer::remote_id [protected]

Address of the remote device.

B.47.4.4 transport_stack∗ TransportQueryTimer::stack [protected]

Pointer to a transport stack.

The documentation for this class was generated from the following file:

• /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h

185

www.manaraa.com

B.48 /ns-2.28/qot/hdr.h File Reference

#include "ns-process.h"

Include dependency graph for hdr.h:

Classes

• struct qot_con_req

QOT_CONNECT_REQUEST message.

• struct qot_con_acc

QOT_CONNECT_ACCEPT message.

• struct qot_con_rej

QOT_CONNECT_REJECT message.

• struct qot_discon_req

QOT_DISCONNECT_REQUEST message.

• struct qot_discon_acc

QOT_DISCONNECT_ACCEPT message.

• struct qot_data_snd

QOT_DATA_SEND message.

• struct qot_data_sync_pnt

QOT_DATA_SYNC_POINT message.

186

www.manaraa.com

• struct qot_data_sync_req

QOT_DATA_SYNC_REQUEST message.

• struct qot_swh_qry

QOT_SWITCH_QUERY message.

• struct prio_info

Transport priority information.

• struct qot_swh_qry_rep

QOT_SWITCH_QUERY_RESPONSE.

• struct qot_swh_req

QOT_SWITCH_REQUEST.

• struct qot_swh_acc

QOT_SWITCH_ACCEPT message.

• struct qot_swh_rej

QOT_SWITCH_REJECT message.

• struct qot_rem_req

QOT_RESUME_REQUEST message.

• struct qot_rem_acc

QOT_RESUME_ACCEPT messsage.

187

www.manaraa.com

• struct qot_rem_rej

QOT_RESUME_REJECT message.

• struct qot_trans_qry

QOT_TRANSPORT_QUERY message.

• struct trans_info

Structure used in QOT_TRANSPORT_QUERY_RESPONSE.

• struct qot_trans_qry_rep

QOT_TRANSPORT_QUERY_RESPONSE messge content.

• struct qot_trans_info_qry

QOT_TRANSPORT_INFO_QUERY messge content.

• struct qot_trans_info_qry_rep

QOT_TRANSPORT_INFO_QUERY_RESPONSE messge content.

• union QoTPacket

Qot packet type.

Enumerations

• enum QoTPacketType {

QOT_CONNECT_REQUEST, QOT_CONNECT_ACCEPT,

QOT_CONNECT_REJECT, QOT_DISCONNECT_REQUEST,

QOT_DISCONNECT_ACCEPT, QOT_DATA_SEND,

QOT_DATA_SYNC_POINT, QOT_DATA_SYNC_REQUEST,

188

www.manaraa.com

QOT_SWITCH_QUERY, QOT_SWITCH_QUERY_RESPONSE,

QOT_SWITCH_REQUEST, QOT_SWITCH_ACCEPT,

QOT_SWITCH_REJECT, QOT_RESUME_REQUEST,

QOT_RESUME_ACCEPT, QOT_RESUME_REJECT,

QOT_TRANSPORT_QUERY, QOT_TRANSPORT_QUERY_RESPONSE,

QOT_TRANSPORT_INFO_QUERY, QOT_TRANSPORT_INFO_QUERY_RESPONSE,

INVALID }

An enumeration of possible QoT states.

• enum QoTReason { INVALID_NODE, INVALID_TRANSPORT, LOW_POWER,

UNINITIALIZED }

An enumeration of possible reasons that a QoT node rejects a connect request.

• enum SwitchType { UPGRADE, DOWNGRADE }

Transport switching type.

• enum ApplicationType {

VoIP, VIDEO, STREAM, MAIL,

FTP, HTTP }

Application type.

B.48.1 Enumeration Type Documentation

B.48.1.1 enum ApplicationType

Application type.

189

www.manaraa.com

Enumerator:

VoIP

VIDEO

STREAM

MAIL

FTP

HTTP

B.48.1.2 enum QoTPacketType

An enumeration of possible QoT states.

Enumerator:

QOT_CONNECT_REQUEST

QOT_CONNECT_ACCEPT

QOT_CONNECT_REJECT

QOT_DISCONNECT_REQUEST

QOT_DISCONNECT_ACCEPT

QOT_DATA_SEND

QOT_DATA_SYNC_POINT

QOT_DATA_SYNC_REQUEST

QOT_SWITCH_QUERY

QOT_SWITCH_QUERY_RESPONSE

QOT_SWITCH_REQUEST

QOT_SWITCH_ACCEPT

QOT_SWITCH_REJECT

190

www.manaraa.com

QOT_RESUME_REQUEST

QOT_RESUME_ACCEPT

QOT_RESUME_REJECT

QOT_TRANSPORT_QUERY

QOT_TRANSPORT_QUERY_RESPONSE

QOT_TRANSPORT_INFO_QUERY

QOT_TRANSPORT_INFO_QUERY_RESPONSE

INVALID

B.48.1.3 enum QoTReason

An enumeration of possible reasons that a QoT node rejects a connect request.

Enumerator:

INVALID_NODE

INVALID_TRANSPORT

LOW_POWER

UNINITIALIZED

B.48.1.4 enum SwitchType

Transport switching type.

Enumerator:

UPGRADE

DOWNGRADE

191

www.manaraa.com

B.49 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thesis/qot.h File Reference

#include <assert.h>

#include "hdr_qot.h"

#include "bi-connector.h"

#include "node.h"

#include "mobilenode.h"

#include "bt-node.h"

#include "ll.h"

#include "mac-timers.h"

#include "object.h"

#include "agent.h"

#include "priqueue.h"

#include "app.h"

Include dependency graph for qot.h:

Classes

• struct stack_wifi

Pointers to transport stacks of WiFi.

• struct stack_bt

Pointers to transport stacks of Bluetooth.

• struct stack_zigbee

192

www.manaraa.com

Pointers to transport stacks of ZigBee.

• struct stack_wusb

Pointers to transport stacks of WUSB.

• union qot_stack

The union of possible transport stacks of a QoT node.

• struct transport_stack

The protocol stack layer of a transport of a QoT node.

• struct app_data

The application data that a session layer protocol sends down to the QoT layer.

• struct sharedT

Shared transport between two communicating QoT nodes.

• class QoTQueue

the super class for the receive and send buffers within a QoT node.

• class QoTOutQueue

The send queue within a QoT node.

• struct act_trans_list

Active transport link list.

• class DevTabEntry

Entry in the Remote Device Table.

193

www.manaraa.com

• class RDT

Remote Device Table.

• class QoTBrain

QoT Brain.

• struct CallBack

Callback link list entry.

• class TransportQueryTimer

Transport query timer.

• struct throughput

The throughput link list item used in the statistical timer.

• struct p_consumption

The power consumption link list item used in the statisticaltimer.

• class StatTimer

Statistical timer.

• class QoTNode

QoT node.

• class QTPM

QoT TPM module.

194

www.manaraa.com

• class TAM

QoT TAM module.

Defines

• #define QOT_BROADCAST ((u_int32_t) 0xffffffff)

• #define MAX_RECV_BUFFER 100

• #define BUFFER_MAX_LEN 64

• #define MAXIMUM_BURST 10

• #define QOT_BUFFER_TIMEOUT 30

• #define QOT_PKT_LEN (512 - 3 - sizeof(qot_data_snd))

• #define CONNECT_TIMEOUT 3

• #define DATA_TIMEOUT 3

• #define RESUME_TIMEOUT 3

• #define SWITCH_TIMEOUT 3

• #define QUERY_TIMEOUT 0.5

• #define TRANSPORT_QUERY_TIMEOUT 2

Enumerations

• enum QoTState {

QOT_READY, QOT_CONNECTING, QOT_CONNECTED,

QOT_DISCONNECTING,

QOT_DISCONNECTED, QOT_DATA_FULL, QOT_TRANS_SWITCH,

QOT_TRANS_DISC,

QOT_PRIMARY_DROPPED, QOT_SECONDARY_DROPPED }

QoT State.

195

www.manaraa.com

B.49.1 Define Documentation

B.49.1.1 #define BUFFER_MAX_LEN 64

B.49.1.2 #define CONNECT_TIMEOUT 3

B.49.1.3 #define DATA_TIMEOUT 3

B.49.1.4 #define MAX_RECV_BUFFER 100

B.49.1.5 #define MAXIMUM_BURST 10

B.49.1.6 #define QOT_BROADCAST ((u_int32_t) 0xffffffff)

B.49.1.7 #define QOT_BUFFER_TIMEOUT 30

196

www.manaraa.com

B.49.1.8 #define QOT_PKT_LEN (512 - 3 - sizeof(qot_data_snd))

B.49.1.9 #define QUERY_TIMEOUT 0.5

B.49.1.10 #define RESUME_TIMEOUT 3

B.49.1.11 #define SWITCH_TIMEOUT 3

B.49.1.12 #define TRANSPORT_QUERY_TIMEOUT 2

B.49.2 Enumeration Type Documentation

B.49.2.1 enum QoTState

QoT State.

Enumeration of QoT states as described in QoT specification.

Enumerator:

QOT_READY

QOT_CONNECTING

QOT_CONNECTED

QOT_DISCONNECTING

QOT_DISCONNECTED

197

www.manaraa.com

QOT_DATA_FULL

QOT_TRANS_SWITCH

QOT_TRANS_DISC

QOT_PRIMARY_DROPPED

QOT_SECONDARY_DROPPED

198

www.manaraa.com

Bibliography

[1] M. Stemm and R. H. Katz, “Vertical handoffs in wireless overlay networks,”Mobile

Networks and Applications, vol. 4, 1999.

[2] S.-E. Kim and J. Copeland, “Tcp for seamless vertical handoff in hybrid mobile data

networks,” inGlobal Telecommunications Conference. IEEE, 2003.

[3] M. Baker, X. Zhao, and J. Stone, “Supporting mobility in mosquitonet,” inproceed-

ings of the 1996 USENIX Technical Conference, San Diego, California, 1996.

[4] A. Salkintzis, C. Fors, and R. Pazhyannur, “Wlan-gprs integration for next-generation

mobile data networks,” inWireless Communications. IEEE, 2002.

[5] M. Buddhikot, G. Chandranmenon, S. Han, Y. Lee, S. Miller, and L. Salgarelli, “Inte-

gration of 802.11 and third-generation wireless data networks,” in INFOCOM. IEEE,

2003.

[6] S. G. et. al., “Demonstrating seamless handover of multi-hop networks,” inREAL-

MAN ’06: Proceedings of the second international workshop on Multi-hop ad hoc

networks: from theory to reality. New York, NY, USA: ACM Press, 2006.

[7] “Ieee 802.21 working group, media independent handover,”

http://www.ieee802.org/21.

[8] M. G. Williams, “Directions in media independent handover,” IEICE TRANSAC-

TIONS on Fundamentals of Electronics, Communications and Computer Sciences,

vol. Vol.E88-A, no. 7, pp. 1772–1776, 2005.

[9] C. D. Knutson, R. W. Woodings, S. B. Barnes, H. R. Duffin, and J. M. Brown,

“Dynamic autonomous transport selection in heterogeneouswireless environments,”

199

www.manaraa.com

in Proceedings of the IEEE Wireless Communications and Networking Conference

(WCNC), 2004.

[10] R. W. Woodings, D. Joos, T. Clifton, and C. D. Knutson, “Rapid heterogeneous ad

hoc connection establishment: Accelerating bluetooth inquiry using irda,” inProceed-

ings of the Third Annual IEEE Wireless Communications and Networking Conference

(WCNC). IEEE, 2002.

[11] J. C. Funk, H. R. Duffin, L. Dai, and C. D. Knutson, “Inverse multiplexing in short-

range multi-transport wireless communications,” inProceedings of the IEEE Wire-

less Communications and Networking Conference (WCNC), NewOrleans, Louisiana,

Mar. 17-19, 2003.

[12] M. P. et. al., “Ria: An rf interference avoidance algorithm for heterogeneous wireless

networks,” will be submitted for WCNC 2007.

200

	A Performance Evaluation of Dynamic Transport Switching for Multi-Transport Devices
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Department Approval Page
	University Approval Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Chapter 1
	Chapter 2
	2.1 Infrastructure-based transport switching
	2.2 Ad hoc transport switching

	Chapter 3
	Chapter 4
	4.1 Heterogeneous nodes
	4.2 Dynamic transport switching
	4.3 Modifications to TCP

	Chapter 5
	5.1 Avoiding collisions
	5.2 Avoiding interference

	Chapter 6
	6.1 Query overhead between two communicating nodes
	6.2 Query overhead from multiple communicating nodes

	Chapter 7
	Appendix A
	A.1 File layout
	A.2 Simulations with heterogeneous nodes in NS-2

	Appendix B
	B.1 Class Hierarchy
	B.2 Class List
	B.3 act_trans_list Struct Reference
	B.3.1 Detailed Description
	B.3.2 Member Data Documentation

	B.4 app_data Struct Reference
	B.4.1 Detailed Description
	B.4.2 Member Data Documentation

	B.5 CallBack Struct Reference
	B.5.1 Detailed Description
	B.5.2 Detailed Description

	B.6 DevTabEntry Class Reference
	B.6.1 Detailed Description
	B.6.2 Constructor & Destructor Documentation
	B.6.3 Member Function Documentation
	B.6.4 Friends And Related Function Documentation
	B.6.5 Member Data Documentation

	B.7 p_consumption Struct Reference
	B.7.1 Detailed Description
	B.7.2 Member Data Documentation

	B.8 prio_info Struct Reference
	B.8.1 Detailed Description
	B.8.2 Member Data Documentation

	B.9 qot_con_acc Struct Reference
	B.9.1 Detailed Description

	B.10 qot_con_rej Struct Reference
	B.10.1 Detailed Description
	B.10.2 Member Data Documentation

	B.11 qot_con_req Struct Reference
	B.11.1 Detailed Description
	B.11.2 Member Data Documentation

	B.12 qot_data_snd Struct Reference
	B.12.1 Detailed Description
	B.12.2 Member Data Documentation

	B.13 qot_data_sync_pnt Struct Reference
	B.13.1 Detailed Description
	B.13.2 Member Data Documentation

	B.14 qot_data_sync_req Struct Reference
	B.14.1 Detailed Description

	B.15 qot_discon_acc Struct Reference
	B.15.1 Detailed Description

	B.16 qot_discon_req Struct Reference
	B.16.1 Detailed Descriptoin

	B.17 qot_rem_acc Struct Reference
	B.17.1 Detailed Description
	B.17.2 Member Data Documentation

	B.18 qot_rem_rej Struct Reference
	B.18.1 Detailed Description

	B.19 qot_rem_req Struct Reference
	B.19.1 Detailed Description
	B.19.2 Member Data Documentation

	B.20 qot_stack Union Reference
	B.20.1 Detailed Description
	B.20.2 Member Data Documentation

	B.21 qot_swh_acc Struct Reference
	B.21.1 Detailed Description
	B.21.2 Member Data Documentation

	B.22 qot_swh_qry Struct Reference
	B.22.1 Detailed Description
	B.22.2 Member Data Documentation

	B.23 qot_swh_qry_rep Struct Reference
	B.23.1 Detailed Descriptoin
	B.23.2 Member Data Documentation

	B.24 qot_swh_rej Struct Reference
	B.24.1 Detailed Description
	B.24.2 Member Data Documentation

	B.25 qot_swh_req Struct Reference
	B.25.1 Detailed Description
	B.25.2 Member Data Documentation

	B.26 qot_trans_info_qry Struct Reference
	B.26.1 Detailed Description
	B.26.2 Member Data Documentation

	B.27 qot_trans_info_rep Struct Reference
	B.27.1 Detailed Description
	B.27.2 Member Data Documentation

	B.28 qot_rans_qry Struct Reference
	B.28.1 Detailed Description

	B.29 qot_trans_qry_rep Struct Reference
	B.29.1 Detailed Description
	B.29.2 Member Data Documentation

	B.30 QoTBrain Class Reference
	B.30.1 Detailed Description
	B.30.2 Constructor & Destructor Documentation
	B.30.3 Member Function Documentation
	B.30.4 Member Data Documentation

	B.31 QoTNode Class Reference
	B.31.1 Detailed Description
	B.31.2 Constructor & Destructor Documentation
	B.31.3 Member Function Documentation
	B.31.4 Friends And Related Function Documentation
	B.31.5 Member Data Documentation

	B.32 QoTOutQueue Class Reference
	B.32.1 Detailed Description
	B.32.2 Constructor & Destructor Documentation
	B.32.3 Member Function Documentation
	B.32.4 Friends And Related Function Documentation
	B.32.5 Member Data Documentation

	B.33 QoTPacket Union Reference
	B.33.1 Detailed Description
	B.33.2 Member Data Documentation

	B.34 QoTQueue Class Reference
	B.34.1 Detailed Description
	B.34.2 Constructor & Destructor Documentation
	B.34.3 Member Function Documentation
	B.34.4 Member Data Documentation

	B.35 QTPM Class Reference
	B.35.1 Detailed Description
	B.35.2 Constructor & Destructor Documentation
	B.35.3 Member Function Documentation
	B.35.4 Member Data Documentation

	B.36 RDT Class Reference
	B.36.1 Detailed Description
	B.36.2 Constructor & Destructor Documentation
	B.36.3 Member Function Documentation
	B.36.4 Friends And Related Function Documentation
	B.36.5 Member Data Documentation

	B.37 sharedT Struct Reference
	B.37.1 Detailed Description
	B.37.2 Member Function Documentation
	B.37.3 Member Data Documentation

	B.38 stack_bt Struct Reference
	B.38.1 Detailed Description
	B.38.2 Member Data Documentation

	B.39 stack_wifi Struct Reference
	B.39.1 Detailed Reference
	B.39.2 Member Data Documentation

	B.40 stack_wusb Struct Reference
	B.40.1 Detailed Description
	B.40.2 Member Data Documentation

	B.41 stack_zigbee Struct Reference
	B.41.1 Detailed Description
	B.41.2 Member Data Documentation

	B.42 StatTimer Class Reference
	B.42.1 Detailed Description
	B.42.2 Constructor & Destructor Documentation
	B.42.3 Member Function Documentation
	B.42.4 Friends And Related Function Documentation
	B.42.5 Member Data Documentation

	B.43 TAM Class Reference
	B.43.1 Detailed Description
	B.43.2 Constructor & Destructor Documentation
	B.43.3 Member Function Documentation
	B.43.4 Member Data Documentation

	B.44 throughput Struct Reference
	B.44.1 Detailed Description
	B.44.2 Member Data Documentation

	B.45 trans_info Struct Reference
	B.45.1 Detailed Description
	B.45.2 Member Data Documentation

	B.46 transport_stack Struct Reference
	B.46.1 Detailed Description
	B.46.2 Member Data Documentation

	B.47 TransportQueryTimer Class Reference
	B.47.1 Detailed Description
	B.47.2 Constructor & Destructor Documentation
	B.47.3 Member Function Documentation
	B.47.4 Member Data Documentation

	B.48 /ns-2.28/qot/hdr.h File Reference
	B.48.1 Enumeration Type Documentation

	B.49 /Users/lei/ns-allinone-2.28/thesis/qot.h File Reference
	B.49.1 Define Documentation
	B.49.2 Enumeration Type Documentation

	Bibliography

