Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2006-11-17

A Performance Evaluation of Dynamic Transport Switching for
Multi-Transport Devices

Lei Wang
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Wang, Lei, "A Performance Evaluation of Dynamic Transport Switching for Multi-Transport Devices"
(2006). Theses and Dissertations. 824.

https://scholarsarchive.byu.edu/etd/824

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dlssertatlons by an authorized administrator of BYU ScholarsArchive. For more information, please
c@ ellen_amatangelo@byu.edu.

www.manharaa.com

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/824?utm_source=scholarsarchive.byu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A PERFORMANCE EVALUATION OF DYNAMIC TRANSPORT

SWITCHING FOR MULTI-TRANSPORT DEVICES

by

Lei Wang

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University

December 2006

www.manharaa.com

www.manharaa.com

o AJLb

Copyright © 2006 Lei Wang

All Rights Reserved

www.manharaa.com

www.manharaa.com

o AJLb

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Lei Wang

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Charles D. Knutson, Chair
Date Daniel M.A. Zappala
Date Yiu-Kai Dennis Ng

www.manharaa.com

www.manharaa.com

o AJLb

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, | have read the thesis of Lei Wang in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date Charles D. Knutson
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean,
College of Physical and Mathematical Sciences

www.manaraa.com

www.manharaa.com

o AJLb

ABSTRACT

A PERFORMANCE EVALUATION OF DYNAMIC TRANSPORT SWITCHING F®&

MULTI-TRANSPORT DEVICES

Lei Wang
Department of Computer Science

Master of Science

Multi-transport devices are becoming more common, but istiphted software is
needed to fully realize the advantages of these deviceshisnpaper, we examine the
performance of dynamic transport switching, which selduotsbest available transport for
communication between two devices. We simulate transpattising within the Qual-
ity of Transport (QoT) architecture and show that it can @ftely mitigate the effects
of congestion and interference for connections betweenntwii-transport devices. We
then evaluate dynamic transport switching overhead tcacharize its effect on application
throughput. Based on these insights, we identify severaidiions of the QoT architecture

and present solutions to improve performance.

www.manaraa.com

www.manharaa.com

o AJLb

ACKNOWLEDGMENTS

| would like to thank my wonderful wife, Qiuyi, for her undéasiding, great sup-

port, and especially the fantastic cooking through thiglprocess.

To my advisor, Dr. Knutson, thank you for the patient andgh#ful help on my
research. It's hard to believe how much | have improved ugder instruction over the
past three years. Thank you for loving me like your own chiiliéel so lucky to have you

as my advisor.

To Dr. Zappala, thank you for pointing out an efficient anceefiive direction on

my research when | feel so frustrated. Thank you for youriptescadvice on my thesis.

Finally, I thank Manoj for helping me through the tedious ale$perate learning
curve of NS-2. It feels fantastic when | can do seriously "hdhgs to NS-2. It seems that

all those painful efforts are finally paid off.

www.manaraa.com

www.manharaa.com

o AJLb

Contents

Acknowledgments

List of Figures

1

Introduction

Related Work

2.1 Infrastructure-based transport switching

2.2 Adhoctransportswitching

Heterogeneous Ad Hoc Networking with QoT

Transport Switching in NS-2
4.1 Heterogeneousnodes,
4.2 Dynamictransport switching

4.3 Modificationsto TCP

Multi-Transport Heterogeneity and Dynamic Transport Switching
5.1 Avoidingcollisions

5.2 Avoidinginterference L.

Transport Availability Query Overhead

Vii

Vi

XVii

13

........ 3.1

...... 14

www.manharaa.com

6.1 Query overhead between two communicatingnodes

6.2 Query Overhead From Multiple Communicating Nodes

Conclusions and Future Work

Heterogeneous Nodes and Dynamic Transport Switching in NQ

A.l FileLayout

A.2 Simulations with Heterogeneous NodesinNS-2

Heterogeneous Node Reference Manual

B.1 ClassHierarchy
B.2 ClasslList
B.3 act_trans_list Struct Reference
B.3.1 Detailed Description
B.3.2 Member Data Documentation
B.4 app_data Struct Reference,
B.4.1 Detailed Description
B.4.2 Member Data Documentation
B.5 CallBack Struct Reference
B.5.1 Detailed Description
B.5.2 Member Data Documentation
B.6 DevTabEntry Class Reference
B.6.1 Detailed Description
B.6.2 Constructor & Destructor Documentation

B.6.3 Member Function Documentation

viii

23

25

29

....... 46

...... 49

www.manaraa.com

B.6.4 Friends And Related Function Documentation. 61

B.6.5 Member Data Documentation 61
B.7 p_consumption Struct Reference 65
B.7.1 Detailed Description 65
B.7.2 Member Data Documentation 65
B.8 prio_info Struct Reference 67
B.8.1 Detailed Description 67
B.8.2 Member Data Documentation 67
B.9 got con_acc StructReference 69
B.9.1 Detailed Description 69
B.10 got_con_rej StructReference L 70
B.10.1 Detailed Description 0o 07
B.10.2 Member Data Documentation 70
B.11 got_con_req StructReference 71
B.11.1 Detailed Description 17
B.11.2 Member Data Documentation 71
B.12 got_data_snd Struct Reference, 72
B.12.1 Detailed Description, 27
B.12.2 Member Data Documentation 72
B.13 got_data_sync_pnt Struct Reference 74
B.13.1 Detailed Description 47
B.13.2 Member Data Documentation 74
B.14 got_data_sync_req Struct Reference 75
B.14.1 Detailed Description, 57
X

www.manaraa.com

B.15 got_discon_acc Struct Reference 76

B.15.1 Detailed Description 0 6 7
B.16 got_discon_req Struct Reference 77
B.16.1 Detailed Description, 77
B.17 got_rem_acc Struct Reference 78
B.17.1 Detailed Description, 87
B.17.2 Member Data Documentation 78
B.18 got_rem_rej Struct Reference L 79
B.18.1 Detailed Descriptiono 97
B.19 got_rem_req Struct Reference 80
B.19.1 Detailed Description o0 08
B.19.2 Member Data Documentation 80
B.20 got_stack UnionReference 81
B.20.1 Detailed Description 138
B.20.2 Member Data Documentation 81
B.21 got_swh_acc Struct Reference 83
B.21.1 Detailed Description, 38
B.21.2 Member Data Documentation 83
B.22 got_swh_qry Struct Reference 84
B.22.1 Detailed Description 48
B.22.2 Member Data Documentation 84
B.23 got_swh_qry_rep Struct Reference 85
B.23.1 Detailed Description o0 58
B.23.2 Member Data Documentation 85
X

www.manaraa.com

B.24 got_swh_rej StructReference L 86

B.24.1 Detailed Description 6 8
B.24.2 Member Data Documentation 86
B.25 got_swh_req Struct Reference 87
B.25.1 Detailed Description 7 8
B.25.2 Member Data Documentation 87
B.26 got_trans_info_qry Struct Reference 88
B.26.1 Detailed Description 88
B.26.2 Member Data Documentation 88
B.27 got_trans_info_qry_rep Struct Reference 90
B.27.1 Detailed Description o 09
B.27.2 Member Data Documentation 90
B.28 got_trans_qry Struct Reference L. 92
B.28.1 Detailed Description, 29
B.29 got_trans_qry_rep Struct Reference 93
B.29.1 Detailed Description, 39
B.29.2 Member Data Documentation 93
B.30 QoTBrainClass Reference 94
B.30.1 Detailed Description, 59
B.30.2 Constructor & Destructor Documentation 95
B.30.3 Member Function Documentation 95
B.30.4 Member Data Documentation 97
B.31 QoTNode Class Reference 98
B.31.1 Detailed Description, 041
Xi

www.manaraa.com

B.31.2 Constructor & Destructor Documentation 104

B.31.3 Member Function Documentation 105
B.31.4 Friends And Related Function Documentation. 116
B.31.5 Member Data Documentation 811
B.32 QoTOutQueue ClassReference 121
B.32.1 Detailed Description, 241
B.32.2 Constructor & Destructor Documentation 124
B.32.3 Member Function Documentation 124
B.32.4 Friends And Related Function Documentation. 128
B.32.5 Member Data Documentation 812
B.33 QoTPacket UnionReference 130
B.33.1 Detailed Description 321
B.33.2 Member Data Documentation 213
B.34 QoTQueueClassReference 136
B.34.1 Detailed Description, 371
B.34.2 Constructor & Destructor Documentation 138
B.34.3 Member Function Documentation 138
B.34.4 Member Data Documentation 913
B.35 QTPM ClassReference 411
B.35.1 Detailed Description 0. 421
B.35.2 Constructor & Destructor Documentation 142
B.35.3 Member Function Documentation 142
B.35.4 Member Data Documentation 314
B.36 RDT ClassReference, 451
Xii

www.manaraa.com

B.36.1 Detailed Description 461

B.36.2 Constructor & Destructor Documentation 147
B.36.3 Member Function Documentation 147
B.36.4 Friends And Related Function Documentation. 149
B.36.5 Member Data Documentation 914
B.37 sharedT Struct Reference 150
B.37.1 Detailed Description, 521
B.37.2 Member Function Documentation 152
B.37.3 Member Data Documentation 315
B.38 stack bt StructReference 157
B.38.1 Detailed Description 571
B.38.2 Member Data Documentation 715
B.39 stack wifi Struct Reference 159
B.39.1 Detailed Description, 591
B.39.2 Member Data Documentation 915
B.40 stack_wusb StructReference 161
B.40.1 Detailed Description, 611
B.40.2 Member Data Documentation 116
B.41 stack zigbee Struct Reference 163
B.41.1 Detailed Descriptiono 631
B.41.2 Member Data Documentation 316
B.42 StatTimer Class Reference 165
B.42.1 Detailed Descriptiono 661
B.42.2 Constructor & Destructor Documentation 167
Xiii

www.manaraa.com

B.42.3 Member Function Documentation
B.42.4 Friends And Related Function Documentation.
B.42.5 Member Data Documentation
B.43 TAMClassReference
B.43.1 Detailed Description
B.43.2 Constructor & Destructor Documentation
B.43.3 Member Function Documentation
B.43.4 Member Data Documentation
B.44 throughput Struct Reference
B.44.1 Detailed Description
B.44.2 Member Data Documentation
B.45 trans_info Struct Reference
B.45.1 Detailed Description
B.45.2 Member Data Documentation
B.46 transport_stack Struct Reference
B.46.1 Detailed Description
B.46.2 Member Data Documentation
B.47 TransportQueryTimer Class Reference
B.47.1 Detailed Description
B.47.2 Constructor & Destructor Documentation
B.47.3 Member Function Documentation
B.47.4 Member Data Documentation
B.48 /ns-2.28/qot/hdr.h File Reference

B.48.1 Enumeration Type Documentation

Xiv

....... 711

171

....... 741

....... 761

....... 791

www.manaraa.com

B.49 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/idigst.h File Reference 192

B.49.1 Define Documentation 196
B.49.2 Enumeration Type Documentation 197
Bibliography 200

XV

www.manharaa.com

www.manharaa.com

ol LEl ZI‘JI_‘I;ISI :

List of Figures

11

3.1

3.2

4.1

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

Al

Mobile Ad Hoc Network composed of multi-transport nodes 2
QoT in OSl reference protocolstack 10
DataexchangeusingQoT a1
Heterogeneous Node inNS-2 14
Use Transport Switching to Avoid Collisions 18
Avoiding Collisions 18
Use Transport Switching to Avoid Interference 20
Avoiding Interference L 21
Query Overhead Between Multiple Communicating Nodes. 24
Query Overhead Between Two Communicating Nodes 26
Query Overhead between Multiple Communicating Nodes. 26
Query Overhead between Multiple Communicating Nodes. 27
QoT Architecture 32

XVii

www.manaraa.com

www.manharaa.com

o AJLb

Chapter 1

Introduction

Mobile devices equipped with multiple wireless networkintgerfaces are becom-
ing increasingly common. A mobile device, such as a PerdDitatal Assistant (PDA),
may support cellular network access as well as ad hoc cannsatith other mobile de-
vices through built-in Bluetooth and infrared ports. Witlth intra-device multi-transpdrt
heterogeneity, devices can potentially receive and trérssgmals via several wireless net-

working interfaces.

Multi-transport devices can be used to improve user expegieh many ways. One
example could be facilitating photo transfer between a’sisetl phone and laptop com-
puter. Both the cell phone and laptop computer support m&ing methods via the Blue-
tooth and WiFi interfaces. The user may initiate the phatagfer over the WiFi interface.
If the WiFi link becomes severely interfered or congestkd,dell phone automatically and

intelligently switches the photo transfer to Bluetoothrtgprove transmission quality.

Multi-transport devices can also be utilized in mesh nekivay. Ad hoc networks
have historically been comprised of devices that suppoih@les transport mechanism.
Building an ad hoc network using multi-transport devices significantly expand its capa-
bility. As an example, Fig. 1.1 shows a mobile ad hoc networkgosed of multi-transport
nodes. In this example, two nodes should be able to commiertimaugh whatever trans-

ports are available. Each hop on a path may potentiallyzat#i different transport, with

1By “transport" we refer broadly to traditional stovepipemmunication architectures interfaced primarily
via the transport layer of the protocol stack. Hence, whemsethe term “transport,” we refer to all layers
from the transport layer to the physical layer inclusive.afisexample, we would refer to Bluetooth and WiFi
as separate “transports."

www.manaraa.com

—— |EEE 802.11b
— — Bluetooth
--------- Fast Infrared

Figure 1.1: Mobile Ad Hoc Network composed of multi-trangpmwdes

the source node dynamically choosing between availablesgzdsed on observable per-
formance. As illustrated in Fig. 1.1, nodéis communicating with nodé. For this
communication, there are potential paths, with one pdgyilif using Bluetooth fromS

to Ny, WiFi from N, to N5, and Fast Infrared (FIR) fronVs to D.

Whether for point-to-point or mesh networking, a neededufeais the ability to
dynamically choose the best available transport at each Agparticular hop on a path

may decide to switch transports for any of the following mss:

* Preserve Connectivithhodes can maintain robust connectivity by utilizing dynami
transport switching. Assumg communicates withv; via FIR. At a later time V3
moves away frond and the distance between them is beyond the range of FIR. Node
S can seamlessly switch the data communication from FIR tetlth to maintain

the connection withVs;.

* Improve Link Quality. Nodes can provide better communication link quality by
means of dynamic transport switching. For example, ndgeand nodeD both
use WiFi and FIR. Assum#&’s communicates wittD via WiFi. This interface could
become congested by ambient IEEE 802.11b traffic or intemfes from other wire-

less sources operating in the 2.4 GHz ISM band. N&gean avoid such congestion

2

www.manaraa.com

and interference by switching the active transport from M6F-IR.

» Conserve PoweiNodes can achieve longer battery life by using interfacasdbn-
sume less power. Assume nagiewitches the active transport from FIR to Bluetooth
to maintain a connection with nodé;. ShouldN; move within the range of FIRY

could switch the data communication back to FIR to conseovesp.

Despite the benefits demonstrated above, dynamic trarspibching mechanism may also
incur overhead to data transfer. For multi-transport d=yjithe networking interface that is
not being used is normally powered off to preserve power.€elerthine the availability of

remote devices via a particular transport, a device musepow the interface periodically
and query for potential connectivity with remote devicesttBof these operations can in-
terfere with data transmission. To lay a foundation fortarttransport switching protocol

design, we need to assess the impact of this overhead oratumti performance.

In this paper, we use simulations to study the performanagynémic transport
switching. We first demonstrate that dynamic transport@virity can effectively mitigate
the negative effects of congestion and interference faisthop connections, which form
the basis for multi-hop connections in ad hoc networks. Vém thvaluate the potential
overhead of dynamic transport switching for point-to-p@ommunication. The overhead
is evaluated first in scenarios of only a single pair of nodestaen when multiple pair of
nodes are communicating. We also address two performaonbéepns that originate from
data buffering within the QoT architecture. We identifyithienpact on data throughput

and present solutions to improve performance.

www.manaraa.com

www.manharaa.com

ol Ll 4 I_l.Ib
*‘J 4 I 4

Chapter 2

Related Work

Prior research on dynamic transport switching in heteregas wireless environ-

ments has typically taken one of two forms: Infrastructb@sed or point-to-point ad hoc.

2.1 Infrastructure-based transport switching

Infrastructure-based transport switching involves paglistening to beacon mes-
sages from a wireless access point to ascertain the presktaceireless network. This is
only applicable to infrastructure-based wireless netwaykand is not suitable for either

peer-to-peer or ad hoc communication.

The BARWAN project at the University of California at Berkglproposes the con-
cept of a vertical handoff system that allows users to roanvéden cells in wireless overlay
networks [1]. In a vertical handoff system, all network nfidees are turned off by default
with the exception of the overlay immediately below the eatroverlay. This overlay
wakes up periodically to listen to beacons on the lower fater for a short time. The
BARWAN mechanism is based on the assumption that the reasdnaffic switching is
to simply roam into or out of the service coverage of wirelessvorks. This assumption
may not hold in a more flexible usage scenario where traffitckivig may also happen in

order to preserve power or improve link quality.

Research at Georgia Institute of Technology uses a sinlacept of the vertical
handoff and proposes a TCP scheme for a seamless verticibfhaetween WLAN and

3G cellular networks [2]. In their performance evaluatitile proposed scheme avoids

www.manaraa.com

packet loss during the handoff and reaches a stable comdamdly.

The MosquitoNet project at Stanford University implemeatsiobile IP system
that supports seamless switching between different n&syvamnd communication devices
[3]. The measurements of their implementation show thatrtherent overhead to switch
networks is insignificant compared to the time required todup a new communication

device.

The capability of dynamic transport switching has also drattention from indus-
try researchers. The WLAN-GPRS integration project at Matbaims to provide users
ubiquitous data services and very high data rates in hotepations [4]. They discuss
the general aspects of integrating WLANs and cellular datavarks and examine the
generic internetworking architectures. The IOTA projecbLacent focuses on providing

users seamless roaming across 802.11 and 3G networks [5].

2.2 Ad hoc transport switching

In ad hoc transport switching, a node must actively probestigported wireless
networking interfaces to determine their availability. eTtollowing projects present dy-
namic transport switching mechanisms that may be suitalleither peer-to-peer or ad

hoc communication.

The WiOptiMo project proposes an application layer solutmfacilitate seamless
handover between wireless networks, such as Bluetoothl80%ocal area networks and
3G cellular networks [6]. This solution is designed for paif communicating devices
and can perform either infrastructure-based or ad hoc gahswitching. In their per-
formance evaluation, the authors show that the througtspnoti largely affected by the
wireless network handover; in the worst case the proposé@&dhsng mechanism reduces
the throughput by less than 2%. However, the overhead duertodic transport availabil-
ity queries are not evaluated. Furthermore, the transpegd in their experiments, GPRS
and WiFi, do not share an overlapping frequency band, sodbeyot interfere with each
other. Transports with overlapping frequencies may séverterfere with each other, and

thereby.generate significant.overhead to data communicatio

6

www.manaraa.com

IEEE 802.21 is an emerging standard for Media Independendéiger (MIH)
services [7] [8]. This standard proposes a link layer sotutio optimize handovers be-
tween heterogeneous networking technologies. It supptgtsithms enabling seamless
handover between networks of IEEE 802 series networks, asdWiFi, Bluetooth and
WIMAX, as well as between IEEE 802 networks and non-802 netsjosuch as cellular
and wired networks. In IEEE 802.21, a mobile terminal deteesthe presence of a wire-
less network through reception of either a beacon or a regptma probe. No work on

performance evaluation of IEEE 802.21 has yet been puldishe

The Quality of Transport (QoT) project aims to facilitate laoc data exchange
between two mobile devices by means of intelligent, dyndanamsport switching [9]. This
project also utilizes the characteristic of devices withltiple networking interfaces to
substantially reduce the cost of Bluetooth device disgpaeid connection establishment

phases [10], and to maximize data throughput through ievengtiplexing [11].

Although all three projects described above are potenyiahchic transport switch-
ing mechanisms that may be used for peer-to-peer or ad homaaination, we use QoT as
an example dynamic transport switching mechanism to cdrmluaesearch. The WiOp-
tiMo project assumes common support to TCP/IP protocokstand hence narrows its
usage models. IEEE 802.21 requires significant modificattorcurrent protocols at the
data link layer, and the technical efforts that are requioegtccomplish this are not clear at

this stage.

www.manaraa.com

www.manharaa.com

ol Ll 4 I_l.Ib
*‘J 4 I 8

Chapter 3

Heterogeneous Ad Hoc Networking with QoT

QoT is a protocol layer residing between the session layetlaa transport layer
in the OSI reference model. As illustrated in Figure 3.1,0rks as a proxy layer between
applications and underlying reliable connection mechagiQoT bridges the upper Trans-
port Proxy Module (TPM) and the lower Transport Abstractidodule (TAM), which are
specific to each supported transport [9]. The TPM appearséssion layer as if it were an
interface to a specific transport, even though the trangpattactually transfers user data
may change during the communication. The TAM interacts withtransport layer as if it

were an arbitrary (but indeterminate) session protocol.

QoT is designed to exploit intra-device heterogeneity thnoge communication
quality by means of dynamic transport switching. FigureiBugtrates a QoT-enabled data
exchange between two devices using session prot§colhe two devices each support
three transports, two of them commadh, @nd73). In this figure, the highest quality link
is provided byT3s, so QoOT routes the traffic of session protoSglvia transport protocol
T5 (in dashed lines). Should link conditions change such’thatrovides a more desirable
link, QoT would switch the underlying transport1é (in solid lines) without affecting the

data exchange.

QoT-enabled multi-transport nodes conduct periodic ggdn determine the status
of networking interfaces in order to facilitate dynamiatsport switching. This is because
pairs of communicating nodes cannot rely on beacons frorastructure networks to as-

certain each other’s presence.

www.manaraa.com

Application Application Application
Presentation Presentation Presentation
Session Session Session
TPM | | TPM TPM
QoT

TAM | | TAM TAM
Transport Transport Transport
Network Network Network
Data Link Data Link Data Link
Physical Physical Physical

Figure 3.1: QoT in OSI reference protocol stack

s2 |

f@

|: | [| [|
|t ________ gt »
| | [| | L |
1
1
|T1| |T>| |Ti3
L
|
Y

— F_:l
=
£ ¢

| | L | [|
]
L

|T4| |T§| |T2|

j
]

Figure 3.2: Data exchange using QoT

10

www.manaraa.com

When communicating with a peer, the QoT layer on the sendbadg buffers pack-
ets from the session layer and assigns sequence numbegstbéfiore sending them down
to the active transport layer protocol. When switching $raorts, the QoT layer on the
sending node must know where to resume the data commumicatien performing trans-
port switch. Once the buffer is full, the QoT layer sends adaichronization message
to the corresponding QoT layer on the receiving node, whasiponds with the sequence
number of the packet most recently received. When the bigfeedl, Q0T cannot handle
further packets from the session layer. Upon receiving yimelsronization response, the
QoT layer releases packets that are acknowledged in therkaufid continues receiving

packets from the session layer.

11

www.manaraa.com

www.manharaa.com

ol LEl ZI‘JI_‘I;ISI N

Chapter 4

Transport Switching in NS-2

In order to evaluate the impact of dynamic transport switghon point-to-point
data communication, we made three significant modificatiomMéetwork Simulator 2 (ns-
2). First, we implemented intra-device heterogeneity pgeainits individual nodes to sup-
port multiple transport mechanisms. Second, we implengesmtdynamic transport switch-
ing mechanism, modeled after QoT, that permits data comzation between two nodes
to seamlessly continue during a transport switch. Finalymade some modifications to

the ns-2 implementation of TCP so that it sends actual packet

4.1 Heterogeneous nodes

As Figure 4.1 shows, we facilitate multi-transport nodeasr2 by subsuming or-
dinary homogeneous nodes (such as WiFi, Bluetooth and Zp®#hin a newly-defined
heterogeneous node structure. Compared to a homogenedeisanbeterogeneous node
is a“virtual" node in the sense of not possessing traditional protocck $égers such as
channel layer, physical layer, data link layer, routingelagind transport layer. Instead, a
heterogeneous node may include one or multiple ns-2 honeogsmodes in order to main-
tain the appearance of a single heterogeneous node. Finaffic generators, such as File
Transfer Protocol (FTP) or Constant Bit Rate (CBR), are @ased with a heterogeneous

node rather than being linked testatictransport agent.

Homogeneous nodes may co-exist with heterogeneous nodles game simula-

tion. Heterogeneous nodes can communicate with eitherdggereous or homogeneous

13

www.manaraa.com

Traffic Generator}

Heterogeneous Node

Dynamic Transport Switching

WiFi BT e e ¢ |ZigBee| | Homogeneous Node

Figure 4.1: Heterogeneous Node in NS-2

nodes, but cannot perform transport switching while comigating with homogeneous

nodes.

4.2 Dynamic transport switching

Upon receiving packets from a traffic generator, the trarigvatching mechanism
of a heterogeneous node determines which transport is tedzkefar data communication.
As shown in Figure 4.1, the transports of a heterogeneous aallinked to its transport
switching mechanism. Since the transport being used fara@ahmunication may change,
a heterogeneous node must know the address and port nuntheraattive transport in the
communicating node. In the connection establishment phagecommunicating nodes
exchange information about the address and port numbereafttiansports. They then
negotiate to determine the transport that is to be used far c@ammunication. When
sending data packets, the transport switching mechanigheafending node informs the
chosen transport of the address and port number of the pomdsg transport on the

remote side to which packets are sent.

14

www.manaraa.com

The link quality may change over time in mobile ad hoc netwotk order to know
if a transport is available and has the quality needed fomgending transport switch, het-
erogeneous nodes conduct periodic transport availakjligries on each transport shared
with the remote node. These queries gather measuremenis latboquality, and QoT
can then make intelligent decisions concerning the “beatidgport on which to transmit

packets.

4.3 Modifications to TCP

In order to properly test transport switching, TCP agentdath the sending and
receiving sides of a communication must send actual pacKétis is because the trans-
port switching mechanisms on both sides must communicéte egich other when they

establish a connection and conduct transport switching.

Current TCP implementations in ns-2 don’t transmit actusdkets, but instead
record the size of the packets being transmitted and ignciealadata. We modified
the Agent / TCP/ Ful | t cp implementation to be able to transmit packets of transport

switching mechanisms in our project.

Current TCP implementations in ns-2 also don'’t retransmoitia packets, but
rather record the sequence number of the packets that ndsal rietransmitted. In or-
der to facilitate potential packet retransmissions, we atgplemented send buffers in the

TCP agent.

15

www.manaraa.com

www.manharaa.com

ol LEl ZI‘JI_‘I;ISI N

Chapter 5

Multi-Transport Heterogeneity and Dynamic Transport Swit ching

In this section we present simulation results utilizing dyeamic transport switch-
ing mechanism of multi-transport nodes to avoid collisiand interference among wireless

technologies. All the data are average values from thetsestifive repeated simulations.

5.1 Avoiding collisions

In high density ad hoc networks, collisions between sigobitevices that are com-
municating with each other via a wireless technology magiigantly affect data through-
put. Heterogeneous nodes are able to mitigate the potgntegdative effects of collisions

by intelligently switching data communication to less cesigd transports.

In our simulation, a pair of heterogeneous nodes, each stupg®ViFi and Blue-
tooth, communicate with each other at a distance of 5 mefeashown in Fig. 5.1, four
additional pairs of homogeneous nodes are created to coratemith each other through
WiFi. All the heterogeneous nodes and homogeneous nodestaie WiFi range of each
other so all nodes could contend for the shared wirelessawelalen all of them use WiFi

to transmit signals. All nodes remain static during thetilife of simulation.

An FTP traffic flow starts from node 1 to node 2 at second 1, aea¢ttimnection is
established over WiFi. At second 8, four FTP sessions sténegfour homogeneous node
pairs. The two heterogeneous nodes switch the active warnfspm WiFi to Bluetooth at
second 14. The simulation ends at second 20. The simulasguitris shown in Fig. 5.2.

Fig. 5.2 represent data throughput over time collectedea@QbT layer of node 2.

17

www.manaraa.com

O<—»OT

10m

oﬁo%

o%oir

<«—— WiFi connection
<+ — =P Bjuetooth connection

Figure 5.1: Use Transport Switching to Avoid Collisions

Use transport switching to avoid collisions

R ™ o | =

g .. \ |

:25 ’ ‘ I ¢—without sync request
E‘ 20 ’ \ I I —8—ywith sync request
=7 \ -

1] \ -

07 iﬁl;u

3 5 7 9 11 13 15 17 19
Time (seconds)

Figure 5.2: Avoiding Collisions

18

www.manharaa.com

Our simulation results show that transport switching cdp heconnection achieve
greater throughput by switching away from a transport thiffess a high collision rate.
Once the homogeneous nodes start data traffic at second Bb&¢idmes crowded. Colli-
sion occurs when more than one node requests to send patietarae time. The Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CAgamanism of the WiFi Me-
dia Access Control (MAC) layer backs off for a random timeipetefore trying to send

packets again. Such backoffs degrade throughput in ouraiion by up to 87.52%.

We expected data throughput to improve after transportcewig, but instead it
dropped to O for three seconds (as shown in the line markéd “without sync reque'St
The reason for this throughput drop lies in the mechanismi@yed by QoT to perform
upgrade transport switching. Recall that QoT buffers pecad must receive a synchro-
nization packet from the receiver to clear its buffer. Thésiges a problem if the syn-
chronization packet is lost. In our simulation, the QoT lage node 1 found its output
buffer full and requested a data synchronization beforértresport switching. Since WiFi
was suffering from serious collisions, this synchronizatiequest was also delayed. Af-
ter about 3 seconds, node 1 received synchronization resdosm node 2, released the
acknowledged packets from its output buffer and resumea wansfer. Hence the data
throughput goes up again after second 17. Switching to Baikbtimproves throughput
because there are no competing connections on this tran$jate that we implemented
the Adaptive Frequency Hopping (AFH) in Bluetooth in ns-@ tisat it does not interfere

with WiFi in this case.

To fix this problem, we modified the QoT specification so that@oT layer on the
sending node immediately requests data synchronizatichemnew transport after con-
ducting upgrade transport switching. Since the new transyuically performs better than
the previous transport, there is a better chance that thishsgnization packet gets through
quickly, enabling data communication to resume sooner.ign 5.2, the line marked by
“with sync requestshows the result with this fix. Data throughput quickly gegsafter
the transport switching from WiFi to Bluetooth. This demirates that dynamic transport

switching of heterogeneous nodes can effectively avoilisaahs in ad hoc networks.

19

www.manaraa.com

4 — —P> Bjyetooth connection

O <+ > O [<_> WiFi connection }

Figure 5.3: Use Transport Switching to Avoid Interference

As observed in Fig. 5.2, the data throughput drops by abo%24 &fter the trans-
port switching even with the above fix. This is caused by therlogad of the transport

availability query, which will be further discussed in f@iVing section.

5.2 Avoiding interference

Interference between disparate wireless technologigscedly in the 2.4 GHz
unlicensed ISM band, may negatively affect data throughpidgterogeneous nodes can
avoid interference by dynamically switching to a less ndrsysport. In this simulation,
we disabled the AFH function of Bluetooth so that there isramping on frequency band
between WiFi and Bluetooth. By doing so, signals from WiFl &tuetooth may interfere

with each other in our simulation.

As shown in Fig. 5.3, a pair of heterogeneous nodes, node haahel 2, commu-
nicate with each other. Both of them support WiFi and Blu#todVe also place five pairs
of homogeneous Bluetooth nodes around node 2. Node 2 ismiiteiranges of homoge-
neous Bluetooth nodes, while node 1 is not. All nodes rentaticsduring the life time of
simulation. In the simulation, the traffic model between@&ddand node 2 is the same as

described in the previous section.

Fig. 5.4 shows that switching from WiFi to Bluetooth can avoiterference and

increase data throughput. In this simulation, we plot dataughput for the case when

20

www.manaraa.com

Use transport switch to avoid interference

N
o

{

with availablity query

—8—yithout avaikability
query

[
o

Throughput (KB/ s)
=
w
\\

1 3 5 7 9 11 13 15 17 19
Time (seconds)

Figure 5.4: Avoiding Interference

QoT conducts periodic transport availability queries, aviten it does not. At second
8, five FTP sessions start at the five homogeneous node pairse tBe active transport
that heterogeneous nodes used to transmit data traffic is 8vi& it is severely interfered
by Bluetooth signals, data throughput drops beginning ebrsg 8. At second 14, the
two heterogeneous nodes switch the active transport froRi WiBluetooth. Bluetooth
improves throughput because it performs frequency hopgirgrate 0625 ;s and hence

suffers less from frequency interferences when compargdfa

A major problem with QoT occurs when it conducts transpodilability queries,
causing QoT to stop transmitting any data for a short periduine. At second 14, the data
throughput values collected with transport availabilityeges are in most cases smaller
than those collected without transport availability gasriThis is because QoT stops packet
transfers when performing a transport availability quemyilut receives a query response
or the query timer expires. QoT queries all the shared ti@tsWiFi and Bluetooth in
this simulation) one after another. This is to avoid potraverlapping during the time
when availability query packets are sent, which would carseneous query results. If a
guery response cannot get back quickly, data throughp@gatively affected. The extent

to which data throughput might be affected is decided by thiiant wireless environment

21

www.manaraa.com

of the communicating heterogeneous nodes and the lendtlk gttery timeout. In this sim-
ulation, we use a query timeout of 5885 and observe the largest throughput degradation

at second 19, where throughput degrades by 43%.

A potential solution for this freez& problem is to utilize a mechanism that can
intelligently separate frequency bands used by the tratspathin a device. If operating
on the same frequencies, transports co-located on a deaig@erfere severely with each
other when transmitting or receiving packets at the same.ti@ne example is the RIA
project [12], in which Bluetooth avoids frequencies on whitcdetects WiFi interference.
Device manufacturers could also partition the spectrumragioe networking interfaces in
the device. However detailed discussion on potential emiatto this problem is not within

the scope of this paper.

One interesting aspect of this simulation is that the thhpug achieved in Fig. 5.4
is lower than the corresponding values in Fig. 5.2, due te®loth interference on the
WiFi transport. The master Bluetooth node (the Bluetoathdport at node 1) continues to
poll the slave (the Bluetooth transport at node 2) to asicett@ status of the link. Polling
packets and the corresponding response packets may bé sensame moment that WiFi
transmits packets. Such overlapping on the time of packetisg is caused by the way
in which a heterogeneous node is created in ns-2. A heteeogemode is composed of
several homogeneous nodes. Protocols of a homogeneousnaydgenerate and send
their own packets, such as the Reqgest to Send (RTS) packetti®WiFi MAC layer and
the POLL packet from the Bluetooth Baseband layer. We sdbetie timings that the
packets are to be sent at the QoT layer, but not at lower pwbtagers. This is because
controlling the timings at all protocol layers would intrgze too much runtime overhead

to ns-2.

22

www.manaraa.com

Chapter 6

Transport Availability Query Overhead

As has been shown in previous sections, the dynamic transpitching mech-
anism in heterogeneous nodes generates overhead due adipéransport availability
gueries. In this section, we evaluate the impact of trarisp@ilability queries in hetero-

geneous nodes on performance in mobile ad hoc networks.

6.1 Query overhead between two communicating nodes

In this section, we evaluate the overhead of transport aviitly queries on data
transfer when there is only one pair of heterogeneous noadi@sncinicating with each
other. This is a common scenario in a user’s daily life, sichetween his/her cell phone

and laptop computer in the office.

We conduct two simulations, one with UDP simulating reaidiapplications and
another with TCP simulating applications that requireataie data transmission. Two het-
erogeneous nodes, 5 meters apart, transmit packets via \Bdth nodes remain static
during the simulation, and both support two transports —eRlath and WiFi. To observe
the overhead of transport availability queries, we varyghery interval from 20 seconds
to 0.5 seconds. We then average throughput over a simuliti@nof 20 seconds at the
QoT layer of the receiving node. To prevent the overhead aflavility queries being
overwhelmed by other interfering factors, we turned on ti#1Aunction of Bluetooth so
that it does not interfere with WiFi. Since there are only twamles in this scenario, there

is also no collision between WiFi traffic.

23

www.manaraa.com

Overhead of transport availability query

TCP over WiFi
—&— TCP over BT

UDP over WiFi

UDP over BT

[S LI <) B B ¢'s BN}
o O O o O O
T

(KB/ s)

N W
o o

Averaged throughput

[
o o

0 5 10 15 20
Query interval (seconds)

Figure 6.1: Query Overhead Between Multiple Communicalioges

Our first UDP simulation shows that transport availabilityeges do not signifi-
cantly impact a low-rate UDP flow. We use Constant Bit RateR{8s a traffic generator.
In ns-2, CBR generates packets with a specified size at afpredenterval. We set CBR
to generate a 64 Byte packet every 188 The average throughput does not drop signif-
icantly. This is because UDP can send out small packets wacklg, and becomes idle
for the rest of the time in the relatively large inter-pacgap. In such a situation, sending

transport availability query packets would not delay CBRkad transfer.

Our second UDP simulation shows that transport availghijiteries can signifi-
cantly impact a high-rate UDP flow. We set CBR to generate eBy1@ packet every ghg
yielding the results shown in Fig. 6.1. With such a work lod®P keeps busy sending
newly generated CBR packets, and transport availabiligrgpackets delay CBR packet
transmission. When we increase the transport availalgligry interval from 0.5 seconds
to 20 seconds, the average throughput is increased by 23085684VNiFi and by 11.15%
over Bluetooth. When using Bluetooth, the average datautiirput doesn’t increase as
much as using WiFi due to the nature of master-slave comratiaitin Bluetooth. Blue-
tooth is a Time Division Multiplexed (TDM) system, with a bk@ime unit of operation of
625 pus. A master node only transmits packets from even time slois séave nodes only

respond on odd time slots. This strict TDM scheme offsetdartbeement in the average

24

www.manaraa.com

throughput, because nodes can only send packets at theloteelgey are assigned to.
They cannot send when new packets are available if it is redt ghots, and they have to

wait till their slots.

We then conducted a TCP simulation. The simulation resaksshown in Fig.
6.1, suggest that transport availability queries do natifigantly impact FTP flow. By
increasing the transport availability query interval fréb seconds to 20 seconds, the
average throughput only increased by 2.28% over WiFi and .69% over Bluetooth.
Longer query intervals don’t bring much benefit to data tfani this situation since the

time spent at the TCP layer becomes the dominating factaiamsinission delay.

6.2 Query Overhead From Multiple Communicating Nodes

In this section, we examine the overhead of transport avéitlaqueries on data
transfer when there are multiple pairs of communicatingesoand all of them conduct
periodic queries. This is to evaluate the impact of avdilgtiueries on data transfer in
the scenario of mesh networking. Although we are still dgplith single-hop communi-
cations in this section, the overhead incurred from pecigdieries behaves the same as in

mesh networking.

In our simulation, we increase the number of communicatetgtogeneous node
pairs from 1 to 5. Node 1 and node 2 communicate with each tdtheungh WiFi. Nodes in
other pairs communicate via Bluetooth. We turn on the AFH:fiom of Bluetooth in this
scenario so that there is no interference between BluetathWiFi. Using this setup, we
can evaluate the impact of transport queries on WiFi thrpugtvithout sending all data on
WiFi, which will drown out the effects of the overhead. Allipaof heterogeneous nodes
conduct periodic transport availability queries at anmvaeof 1 second. As shown in Fig.
6.2, the distance of the two nodes within one pair is 5 meterd, the distance between
neighboring pairs is 1 meter. All nodes are within the ranigeagh other’s transports. The
simulations last for 20 seconds, and the data shown in Fgard Fig. 6.4 are collected at

node 2.

When, using,CBR as the traffic generator and UDP as the tranigyyer protocol,

25

www.manaraa.com

OF==30—+

1_—t In == Bluetooth connection
I< 5m >|

Figure 6.2: Query Overhead Between Two Communicating Nodes

Overhead due to transport query (UDP)

90
k=1 80
2 70
= —¢—uwith got availabiliy
350 query
= & 50 \ —8—yith gqot avaiabiliy
= w 40 \ query, with fix
g ~ 30 \ without got avaiability
g 20 \ query, with fix
q>’ 10 x
< 0 ‘ ‘ g g

0 2 4 6 8 10 12
Number of nodes

Figure 6.3: Query Overhead between Multiple Communicaindes

26

www.manharaa.com

Overhead due to transport query (TCP)

= ——

S5 35 L

o

-g’ 30

g 25 with gotavailabiliy
= query

£ m 20

; ¥ —8—yithout got avaiabiliy
e~ 1° query

o

2@ 10

o

S 5

< 0

0 2 4 6 8 10 12
Number of nodes

Figure 6.4: Query Overhead between Multiple Communicdiindes

as shown in Fig. 6.3, there is a significant difference in therage throughput between
communications with and without transport availabilityegying. With 5 pairs of nodes
conducting periodic transport availability queries on Wike average throughput drops
by 17.93%. This is because QoT stops data transfer whileumimd) transport availability

gueries.

As shownin Fig. 6.3, throughput drops to nearly zero wheniWW&€omes crowded.
This drop occurs because UDP is an unreliable transpord@oband packets may be lost
due to WiFi collisions. If QoT’s synchronization packet @st, a dead_lock may result
between node 1 and node 2. At node 1, QoT won’t remove paciatsthe buffer until
it receives a synchronization response message, but ifytiehsonization request packet
is lost, QOT never removes anything from the buffer, and theiercannot send packets out
any more. A solution to this problem is for QoT to not buffetalpackets from the session
layer if the underlying transport is unreliable. When uswigP, applications should be
responsible for providing reliability. Thus there is no dder packet synchronization, and

this problem can be avoided.

We then conducted a TCP simulation. Simulation resultshasvs in Fig. 6.4,
suggest that there is no significant difference in the awethgoughput whether nodes

conduct periodic transport availability queries or not whieere are fewer than 4 pairs of

27

www.manaraa.com

nodes. This is because the number of nodes that conductmegueries is small and the
WiFi transport is not crowded, so the time spent at the TCPBrlgg/the dominating factor
for packet transmission delay. When more nodes perfornspam availability querying,

WiFi becomes more crowded and throughput drops. This is wégan observe a further
drop of 3.93% in the average throughput when we employ 5 pamsdes. We can expect

that this value becomes even lower when the number of WiFe madrs increases.

28

www.manharaa.com

Chapter 7

Conclusions and Future Work

In this paper, we introduced the value of constructing adtetworks by employing
devices with multiple transports. Utilizing dynamic traost switching can provide better

connectivity in ad hoc networks.

We used QoT as an example dynamic transport switching messthaand demon-
strate that it can effectively mitigate the negative congeges of congestion and interfer-

ence that may occur in ad hoc networks.

Despite its benefits, a dynamic transport switching mecmamnay also incur over-
head that limits data transfer. Since the example transpotthing mechanism we use in
this paper would freeze data transfer while performingdpant availability querying, data

throughput may drop due to such queries.

We also addressed two problems found in QoT and presentiohipray solutions
to improve performance. In order to solve the problem thauocwhen QoT conducts
upgrade transport switching, we proposed to let QoT recupatcket synchronization im-
mediately after it switches data communication to a newsgpart. To solve the problem in
the QoT output buffer, we proposed to not buffer sessiorrldgta packets at the QoT layer
when the underlying transport protocol is unreliable. Boil(3till needs to buffer session
layer data packets when dealing with reliable transpoerdayotocols, such as TCP, or it
won’'t know where to continue data communication upon a partsswitch. Simulation

results suggest that the proposed solution can effectingdyove performance.

In this paper, we demonstrated the efficacy of dynamic tramsgwitching for

29

www.manaraa.com

single-hop connections. For future research, we are pugswork on issues that may
arise from multi-hop connections, such as how to condu@rbgeneous routing and how

to intelligently balance work loads between different st

30

www.manharaa.com

Appendix A

Heterogeneous Nodes and Dynamic Transport Switching in N3-

This document describes the files comprising the heterageneodes and dynamic
transport switching mechanism in NS-2. This document atswiges guidelines on how

to configure simulations involving heterogeneous nodesSr2IN

A.1 File Layout

The files comprising the heterogeneous nodes and dynanmspioet switching

mechanism are organized under thes- 2. 28/ qot directory.
Theqgot directory includes the following files and subdirectory.
e qot.h
e hdr_qot.h
* ns-qot.tcl
* qot. cc
* qot - node. cc
ot _queue. cc
e ot _tiners.cc

e dm

31

www.manaraa.com

Session Layer

¢

TPM

4
>| Device Manager RDT Table

TAM

¢

Transport Layer

Figure A.1: QoT Architecture

File got - node. cc contains functions that constitute tlg@T Cor e module
in QoT architecture, as demonstrated in Fig.A.1. K& . cc contains functions that
constitute theQoT Brai n, Devi ce Manager, TPM TAM and RDT Tabl e mod-
ules. Fileqot queue. cc contains functions that implement QoT data buffer. File
got _ti mers. ccincludes functions that deploy QoT internal timers. Fige got . t cl
includes QoT interface functions Tl space. Directorgmincludes files that deploy de-

cision making mechanisms @T Br ai n.

Interfacing functions to the original NS-2 architecture atso implemented, and

the files under the following directories are significantlgdified.

tcl/lib: ns-lib.tcl / ns-nobil enode.tcl / ns-packet.tcl
e apps: app.cc / app.h / udp.cc
e aodv: aodv. cc

bl.uet.oot.-h..baseband. cc / baseband. h / ns-btnode.tcl

32

www.manaraa.com

e common: agent.cc / agent.h / nobil enode. h / packet.h
e mac: mac-802 _11.cc / nmac-802 11.h / mac.h / mac-wu. h
* queue: queue. h

etcp: tcp-full.cc / tcp-sink.cc

wpan: p802_ 15 4mac. cc

e WJ: WU. CC

A.2 Simulations with Heterogeneous Nodes in NS-2

Tcl commands are implemented to let users be able to manageasionsl that
involve heterogeneous nodes in NS-2. This section descthee usages of theskc!

commands.

Since the heterogeneous nodes are modeled after QoT,ngreatieterogeneous
node in a simulation is equivalent to creating a QoT node iR2NSTo create a QoT
node, the user needs to turn thet flag on in thenodeconf i g function of Tcl class

Si mul at or . Following is an example of creating a QoT node in a simuratio

$ns_ node-config -qot ON
set qot _node(0) [$ns_ node]
set got_node(1l) [$ns_ node]

$ns_ node-config -qot OFF

In the example aboveéins_ is an instance of th&cl classSi nul at or . After
theqot flagis turned on, creating a QoT node is the same as creatioglarary homoge-
neous node in the original NS-2 distribution. In this exagpplvo QoT nodes are created.
Theqot flag is turned off after the creation of the QoT nodes in ordesreate potential

subsequent.homogeneous nodes in the simulation.

33

www.manaraa.com

After a QoT node is created, transports need to be attachied Recall that het-
erogeneous nodes are "virtual" in the sense that they dosigss traditional underlying
protocol stack layers. Homogeneous nodes are created tariports of a heterogeneous

node. Transports are attached to a QoT node by the comataraich_t r ansport .

$qot _node(0) attach transport BT $bt node(0) TCP $tcpO
ACDV

$qot _node(0) attach transport WFI $w fi _node(0) TCP
$tcp2 AODV

The example above attaches two transports, Bluetooth aRg ia QoT nodeBT
andW FI inform the QoT node the type of the transports attact#at. node(0) and
$wi fi _node(0) are handlers to the two transports, which are actually twodgeneous
nodes in NS-2.$t cp0 and$t cp2 are handlers of the transport layers of the transports
Bluetooth and WiFi respectively. AODV identifies the typetbé routing agent that the

transports support.

Once QoT nodes are created, the user can use comomniect - got - node

in Tcl classSi mul at or to connect them.

$ns_ connect - qot - node $qot _node(0) $qot_node(1)

In order to realize the dynamic switching of data traffic bedw transports, traffic

generators are associated with the TPM module of QoT.

set ftp [new Application/FTP]
set tpnl [new Agent/ QTPM

$ftp attach-qot $got_node(0) $tpnil

34

www.manaraa.com

The example above first creates a FTP instance and a TPM mothidnce.
The traffic generator is then linked to the TPM module teyt$l of QoT node
$qot _node(0) . Commandat t ach- got isimplemented in théppl i cat i on class,
so that commonly used traffic generators, such as FTP and @B&natically inherit this

command.

To maintain an appearance of a single node in the simula#gooT node

synchronizes the coordinates of all its transports by timercandset Locat i on.

$got _node(0) setlLocation 5.0 5.0 0.0

In the above examplé&got node(0) set the coordinates of all its transports to
5.05.00.0.

QoT nodes can also move in a simulation. All the transpors QbT node move

to a new destination from a common starting point at a samedspe

$ns_ at 15.0 "$qot _node(0) setdest 10.0 6.0 1.0"

In above example$qot _node(0) starts moving to (10.0, 6.0) with a speed of
1.0m/s

A QoT node can conduct transport switching by commandnsport _swi t ch.

$ns_ at 14.0 "$qgot _node(0) transport_sw tch
[$got _node(1l) set id] BT"

In the example above$qot node(0) communicates wittbgot node(1),

and switches the active transport to Bluetooth at secori@l 14.

35

www.manaraa.com

Two statistical functions implemented in cla3sTNode are also provided to help
users collect simulation results. Commamdi nt Thr oughput prints the throughput
over time collected at the QoT layer on the receiving nodem@andpr i nt Power

prints the power consumption over time of the QoT node.

36

www.manharaa.com

Appendix B

Heterogeneous Node Reference Manual

B.1 Class Hierarchy

This inheritance list is sorted roughly, but not completalphabetically:

act_trans_list 14
app_data e 43
CallBack 46
DevTabEntry 49
P_CONSUMPLION e e e e e 65
prio_info. e 67
QOL_CON_ACC o o ot e e e e e e e e 69
JOt_CON €| v e e e e e e e e e e 70
QOL CON_FEQ . . . o v o e e e e e e e e e e 71
got data_snd 72
got_data_synCc_pnt 4 7
got_data SYNC req v v v i i e e e e e 57
gOt_diSCON_ACC v o i e e e e e e e e e e 76
got_diSCON_req o o 77
QOL reM_AcCC o o o e e e e e e e e 78
JOt reM €] o o e e e e e e 79
JOL_IeM_TeQ v o o e e e e e e e e 80
got_stack 81

37

www.manharaa.com

got_ SWh_acC. e 83

got_swh_qry. 84
got_ SWh_Qry rep o o e e e 85
gOt_ SWh _rej e e e 86
got_swh_req 87
got trans_info_qry 88
got trans_info_qry rep 90
got_trans_qry e 92
got_trans_qry_rep e 93
QoTBrain e e e 94
QoTNoOde e e 98
QoTPacket. e 130
QoTQUEUE e e e e 136
QoTOUtQUEUE e 121
QTPM . o o e e e 141
RDT . . e 145
sharedT 150
stack_bt 157
stack_wifi 159
stack_wusb 161
stack_zigbee e 316
StatTimer 165
TAM . o e 170
throughput e 174
trans info 176
transport_stack 781
TransportQueryTimer e 182

38

www.manharaa.com

B.2 Class List

Here are the classes, structs, unions and interfaces vighdascriptions:

act_trans_list (Active transport linklist) 41

app_data (The application data that a session layer prosecals down to the

QoTlayer) e 43
CallBack (Callback link listentry) 46
DevTabEntry (Entry in the Remote Device Table) 49
p_consumption (The power consumption link list item usethanstatistical timer) 65
prio_info (Transport priority information) 67
got_con_acc (QOT_CONNECT_ACCEPTmessage) 69
got_con_rej (QOT_CONNECT_REJECTmessage) 70
got_con_req (QOT_CONNECT_REQUEST message) 71
got_data_snd (QOT_DATA SENDmMessage) uu. 72
got_data_sync_pnt (QOT_DATA_SYNC _POINT message) 74
got_data _sync_req (QOT_DATA SYNC REQUEST message) 75
got_discon_acc (QOT_DISCONNECT_ACCEPT message) 76
got_discon_req (QOT_DISCONNECT_REQUEST message) 77
got_rem_acc (QOT_RESUME_ACCEPTmesssage) 78
got_rem_rej (QOT_RESUME_REJECTmessage) 79
got_rem_req (QOT_RESUME_REQUEST message) 80
got_stack (The union of possible transport stacks ofaQaEno 81
got_swh_acc (QOT_SWITCH_ACCEPTmessage) 83
got_swh_qgry (QOT_SWITCH QUERYmessage). 84
got_swh_qgry_rep (QOT_SWITCH_QUERY RESPONSE) 85
got_swh_rej (QOT_SWITCH_REJECTmessage) 86
got_swh_req (QOT_SWITCH_REQUEST) . . .« o v v 87
got_trans_info_qgry (QOT_TRANSPORT_INFO_QUERY messgeeat) . .. 88
got_trans_info_qry_rep (QOT_TRANSPORT_INFO_QUERY_RBESBISE

messge content) 90

39

www.manaraa.com

got_trans_qry (QOT_TRANSPORT_QUERY message)

92

got_trans_qry_rep (QOT_TRANSPORT_QUERY_RESPONSE neessgtent) 93

QoTBrain (QoTBrain),
QoTNode (QoTnode) i
QoTOutQueue (The send queue withina QoTnode)
QoTPacket (Qot packettype).
QoTQueue (Super class for the receive and send bufferswvatQioT nod
QTPM (QOTTPMmodule)
RDT (Remote Device Table)

sharedT (Shared transport between two communicating Qdé&sp . . .

stack bt (Pointers to transport stacks of Bluetooth)

stack_wifi (Pointers to transport stacksof WiFi)

stack_wusb (Pointers to transport stacksof WUSB)

stack _zigbee (Pointers to transport stacks of ZigBee)
StatTimer (Statisticaltimer)

TAM (QoT TAMmodule)
throughput (The throughput link list item used in the statéd timer) . .

trans_info (Structure used in QOT_TRANSPORT_QUERY_RESBD)

transport_stack (The protocol stack layer of a transpoat@bT node)

TransportQueryTimer (Transport query timer)

40

e)... 136

www.manaraa.com

B.3 act_trans_list Struct Reference

Active transport link list.
#i ncl ude <qot. h>

Collaboration diagram for act_trans_list:

Public Attributes
* sharedT« share

Pointer to the shared transport.

* act_trans_lisk next_

Linkage to the next entry on the link list.

» act_trans_lisk prev_

Linkage to the previous entry on the link list.

B.3.1 Detailed Description

Active transport link list.

This link list is maintained and used by QoTBrain for deaisimaking purpose.
This list might be the sharedT list of the DevTabEntry or itbset. This list should always

be sorted and the most desired active transport should bedta the head.

B.3.2 Member Data Documentation

41

www.manaraa.com

B.3.2.1 act _trans_list act_trans_list::next_

Linkage to the next entry on the link list.

B.3.2.2 act_trans_list act_trans_list::prev_

Linkage to the previous entry on the link list.

B.3.2.3 shared act_trans_list::share

Pointer to the shared transport.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

42

www.manharaa.com

B.4 app_data Struct Reference

The application data that a session layer protocol sends dmthe QoT layer.
#i ncl ude <qot. h>

Collaboration diagram for app_data:

Public Attributes

int size

The size of this application data packet, in bytes.

AppDatax dat

const chak flag

app_data next_

Linkage to the next application data packet in the applmatpackets link list of the QoT

node.

nsaddr_t dest

The address of session packets destination.

double ts_

B.4.1 Detailed Description

The application data that a session layer protocol sends dmthe QoT layer.

B.4.2 Member Data Documentation

43

www.manharaa.com

B.4.2.1 AppDatar app_data::dat

B.4.2.2 nsaddr_tapp_data::dest

The address of session packets destination.

B.4.2.3 const chax app_data::flag

B.4.2.4 app_data app_data::next_

Linkage to the next application data packet in the applicatiackets link list of the
QoT node.

Session packets are buffered at the QoT layer before sendindJpon receiving
session layer packets, the Qot layer first check if theradirexists a QoT connection for
this destination. If so, Q0T segments the session packetJiaT packets and put them
into the QOT output buffer waiting to be sent out (if with TCH)not, QoT put the session
packets in a buffer and start establishing the required ectron.

B.4.2.5 intapp_data:size

The size of this application data packet, in bytes.

B.4.2.6 double app_data::ts_

The documentation for this struct was generated from tHeviahg file:

44

www.manaraa.com

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

45

www.manharaa.com

B.5 CallBack Struct Reference

Callback link list entry.
#i ncl ude <qot. h>

Collaboration diagram for CallBack:

Public Attributes

charx call_type

Callback type: DATA_SYNC, PERIODIC_QUERY, SWITCH_REQUEASTA_SEND.

sharedTx share

Pointer to a shared transport.

nsaddr_t remote_id

The address of the remote device.

DevTabEntryx entry

Pointer to an entry of the Remote Device Table.

int pkt_id

QoT data packet sequence number.

CallBackx next_

Pointer to the next item in the callback link list.

46

www.manharaa.com

B.5.1 Detailed Description

Callback link list entry.

B.5.2 Member Data Documentation

B.5.2.1 chak CallBack::call_type

Callback type: DATA_SYNC, PERIODIC_QUERY, SWITCH_REQUES
DATA_SEND.

B.5.2.2 DevTabEntry« CallBack::entry

Pointer to an entry of the Remote Device Table.

B.5.2.3 CallBack: CallBack::next

Pointer to the next item in the callback link list.

B.5.2.4 int CallBack::pkt_id

QoT data packet sequence number.

B.5.2.5 nsaddr_t CallBack::remote_id

The address of the remote device.

47

www.manharaa.com

B.5.2.6 shared® CallBack::share

Pointer to a shared transport.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

48

www.manharaa.com

B.6 DevTabEntry Class Reference

Entry in the Remote Device Table.
#i ncl ude <qot. h>

Collaboration diagram for DevTabEntry:

Public Member Functions

DevTabEntry (RDTxrdt)

Class constructor.

nsaddr_t remote_id ()

Retrieve the ID of the communicating node.

void set_id (nsaddr_t id)

Set the ID of the communicating node.

void set_roll (intr)

Set the roll of this node in the communication.

int roll ()

Retrieve the roll of this node.

sharedT« currentT ()

Retrieve the pointer to the transport that is being used &anmunication.

RDT rdt ()

49

www.manharaa.com

Pointer to the Remote Device Table.

void setRDT (RDTx«rdt)

Set the pointer to the Remote Device Table.

void setCurrent (sharedt)

Set the pointer to the active transport.

void setOldCurrent (shared)

Set the pointer to the transport that was being used for tharnsaonication before the

transport switching.

shared T« oldCurrent ()

Retrieve the pointer to the transport that was being usediercommunication before

the transport switching.

int received ()
void setReceived (int i)

int queLen ()

Retrieve the length of the queue.

QoTState gotState ()

Retrieve the current state of QoT.

void setState (QoTState st)

Set the state of QoT.

app_data check_app_buff ()

Retrieve the.application packet buffer.

50

www.manaraa.com

» act_trans_lisk get_active_by_tag (chatag)

Retrieve the active transport with the specified type.

» sharedT« getAvailShare ()

Retriee the first available transport in the shared trangpioik list.

* unsigned getPktID ()

Get the next QoT data packet ID.

* void handleAppData (app_datd)

Process the received session layer data packets.

* void createQoTHdr (int size, app_daid)

Create QoT data packet header.

» sharedTx getT (chartag, ns_addr_t dest)

» sharedT« hasT (chaxtag)

Check if there exists a shared transport with the specifipd iy the link list.

Public Attributes

« RDT * rdt_

Pointer to the Remote Device Table that this table entryrggdo.

Private Member Functions

o intremovel (transport_stack)

51

www.manaraa.com

Remove the shared transport from the link list.

* void syncCheck (unsigned id)

Request a data synchronization to the send buffer.

void insertActiveTransport (sharedEhare)

Insert the transport into the active transport list.

* void removeActiveTransport (sharedshare)

Remove the transport into the active transport list.

void updateQueryResults (shareedhare, int result)

* void sortActiveTransport ()

Sort the active transports from high to low according to thailities.

Private Attributes

nsaddr_t deviD

The address of the remote node.

int query_complete

A flag that identifies if the transport availability query fibvis remote device is done.

QoTOutQueue: que

Pointer to the send buffer for this connection.

sharedTx currentT _

Pointer to the active transport.

52

www.manaraa.com

sharedTx old_currentT

Pointer to the transport that was used before the transpaitching attempt.

sharedT« share_t_hdr

Head of the link list of the shared transports of a QoT coninect

sharedT« share_t_tail

Tail of the link list of the shared transport of a Q0T conneuti

introll_

The roll of the node in a QoT connection.

act_trans_lisk list_head

Head of the available shared transport link list.

intrcvd_

QoT State state

The QoT state for this connection.

int infinite_send_

A flag that identifies if the traffic generator issues infiniéelet send.

app_data app_buff

A buffer to store session data packet information.

unsigned qot_pkt_id

Sequence number of QoT data packet.

53

www.manharaa.com

» DevTabEntry« next_

Pointer to the next device table entry on the link list.

» DevTabEntry« prev_

Pointer to the previous device table entry on the link list.

Friends

class RDT

class QoTBrain

class QoTNode

class QoTOutQueue

class TransportQueryTimer

class SyncTimer

B.6.1 Detailed Description

Entry in the Remote Device Table.

QoT creates an entry in the Remote Device Table for each comaating node.

B.6.2 Constructor & Destructor Documentation

B.6.2.1 DevTabEntry::DevTabEntry (RDT x rdt)

Class constructor.

54

www.manharaa.com

B.6.3 Member Function Documentation

B.6.3.1 app_data DevTabEntry:.check_app_buff () [i nli ne]

Retrieve the application packet buffer.

B.6.3.2 void DevTabEntry::createQoTHdr (int size app_datax d)

Create QoT data packet header.

This function creates the QoT headers for QoT data packeis. attual packets
are created at the transport layer. The headers createdreerepied to the corresponding

fields of the actual packets after they are created.

Parameters:

size The size of the QoT data packet that is to be created.

d The session layer data packet.

B.6.3.3 shared& DevTabEntry::currentT () [inline]

Retrieve the pointer to the transport that is being useddormunication.

B.6.3.4 act_trans_list DevTabEntry::get_active by tag (charx tag)

Retrieve the active transport with the specified type.

If no transport with the specified type found in the list, NUlsLreturned.

55

www.manaraa.com

Parameters:

tag The type of the transport, such as WIFI or BT.

B.6.3.5 shared& DevTabEntry::.getAvailShare ()

Retriee the first available transport in the shared trandipérlist.

B.6.3.6 unsigned DevTabEntry::getPktID () [i nl i ne]

Get the next QoT data packet ID.

B.6.3.7 sharedk DevTabEntry::getT (char x tag, ns_addr_tdes)

Return the pointer to the shared pointer that meets thefggabtype and address.
Create a new shared transport entry with the specified typeaddress if no transport is
found. Correponding fields in the entry are filled. The newlated entry is appended to
the link list.

Parameters:

tag The type of the shared transport, such as WIFI or BT.

dest The address and the port number of the corresponding treenspdhe remote

node.

Returns:

The pointer to the transport with the specified type and addre

56

www.manaraa.com

B.6.3.8 void DevTabEntry::handleAppData (app_datax d)

Process the received session layer data packets.

Segment the sessoin layer data packet into QoT data padtk#ts.infinite_send
flag is set, QoT data packets will be generated till the quehdli
Parameters:

d Session layer data packet.

B.6.3.9 shared& DevTabEntry::hasT (char « tag)

Check if there exists a shared transport with the specifipd ity the link list.
Parameters:
The type of the shared transport, such as WIFI or BT.
Returns:

The pointer to the transport with the specified type or NULL.

B.6.3.10 void DevTabEntry::insertActiveTransport (sharedT « share [pri vat €]

Insert the transport into the active transport list.
Parameters:

The shared transport that is to be inserted.

B.6.3.11 shared® DevTabEntry::oldCurrent () [i nline]

Retrieve the pointer to the transport that was being usedh®rcommunication

before the transport switching.

57

www.manaraa.com

B.6.3.12 QoTState DevTabEntry::qotState () [i nl i ne]

Retrieve the current state of QoT.

B.6.3.13 int DevTabEntry::queLen () [i nl i ne]

Retrieve the length of the queue.

B.6.3.14 RDT DevTabEntry::rdt () [inli ne]

Pointer to the Remote Device Table.

B.6.3.15 int DevTabEntry::received () [i nl i ne]

B.6.3.16 nsaddr_t DevTabEntry::remote_id () [i nl i ne]

Retrieve the ID of the communicating node.

B.6.3.17 void DevTabEntry::removeActiveTransport (shaedT x share

[private]

Remove the transport into the active transport list.

Parameters:

The shared transport that is to be removed.

58

www.manharaa.com

B.6.3.18 int DevTabEntry::removeT (transport_stack«r) [pri vat e]

Remove the shared transport from the link list.

Parameters:

r The protocol stack of the transport that is to be removed fiteerink list.

Returns:

0 if there is no more shared transport after the removal. dnifaval operation failed.

B.6.3.19 int DevTabEntry:roll () [inli ne]

Retrieve the roll of this node.

B.6.3.20 void DevTabEntry::set_id (nsaddr_tid) [i nl i ne]

Set the ID of the communicating node.

B.6.3.21 void DevTabEntry::set_roll (intr) [i nli ne]

Set the roll of this node in the communication.

1 for master node, O for slave node.

B.6.3.22 void DevTabEntry::setCurrent (sharedTx«t) [i nli ne]

Set the pointer to the active transport.

59

www.manaraa.com

B.6.3.23 void DevTabEntry::setOldCurrent (sharedTxt) [i nl i ne]

Set the pointer to the transport that was being used for themamication before

the transport switching.

This pointer is used for fallback in case of a failed upgradagport switching.

B.6.3.24 void DevTabEntry::setRDT (RDTx* rdt) [i nl i ne]

Set the pointer to the Remote Device Table.

B.6.3.25 void DevTabEntry::setReceived (int) [i nli ne]

B.6.3.26 void DevTabEntry::setState (QoTStatest) [i nl i ne]

Set the state of QoT.

B.6.3.27 void DevTabEntry::sortActiveTransport () [pri vat e]

Sort the active transports from high to low according torthélities.

B.6.3.28 void DevTabEntry::syncCheck (unsignedd) [inline, private]

Request a data synchronization to the send buffer.

Parameters:

id The sequence number of the data packet that is last recepbe Ibemote node.

60

www.manaraa.com

B.6.3.29 void DevTabEntry::updateQueryResults (sharedF share int result)

[private]

B.6.4 Friends And Related Function Documentation

B.6.4.1 friend class QoTBrain [fri end]

B.6.4.2 friend class QoTNode|[f ri end]

B.6.4.3 friend class QoTOutQueue|[f ri end]

B.6.4.4 friend class RDT [fri end]

B.6.4.5 friend class SyncTimer [fri end]

B.6.4.6 friend class TransportQueryTimer [fri end]

B.6.5 Member Data Documentation

61

www.manharaa.com

B.6.5.1 app_data DevTabEntry::app_buff [pri vat e]

A buffer to store session data packet information.

B.6.5.2 shared& DevTabEntry::currentT_ [pri vat e]

Pointer to the active transport.

B.6.5.3 nsaddr_t DevTabEntry::devID [pri vat e]

The address of the remote node.

B.6.5.4 int DevTabEntry::infinite_send_ [pri vat e]

A flag that identifies if the traffic generator issues infinieeket send.

B.6.5.5 act_trans_list DevTabEntry::list head [pri vat e]

Head of the available shared transport link list.

B.6.5.6 DevTabEntry« DevTabEntry::next_ [pri vat e]

Pointer to the next device table entry on the link list.

62

www.manaraa.com

B.6.5.7 shared& DevTabEntry::old_currentT [pri vat e]

Pointer to the transport that was used before the transpddsng attempt.

B.6.5.8 DevTabEntry« DevTabEntry::prev_ [pri vat e]

Pointer to the previous device table entry on the link list.

B.6.5.9 unsigned DevTabEntry::qot_pkt id [pri vat e]

Sequence number of QoT data packet.

Start from 0.

B.6.5.10 QoTOutQueue DevTabEntry::que [pri vat e]

Pointer to the send buffer for this connection.

B.6.5.11 int DevTabEntry::query_complete [pri vat e]

A flag that identifies if the transport availability query this remote device is done.

B.6.5.12 int DevTabEntry::rcvd_ [pri vat e]

B.6.5.13 RDT« DevTabEntry::rdt_

Pointer.to.the,Remote Device Table that this table entryrigsdo.

63

www.manaraa.com

B.6.5.14 int DevTabEntry::roll_ [pri vate]

The roll of the node in a QoT connection.

1 for master, O for slave.

B.6.5.15 shared& DevTabEntry::share_t hdr [pri vat e]

Head of the link list of the shared transports of a QoT conoact

B.6.5.16 shared& DevTabEntry::share t tail [pri vat e]

Tail of the link list of the shared transport of a Q0T conneti

B.6.5.17 QoTState DevTabEntry::state [pri vat e]

The QoT state for this connection.

The documentation for this class was generated from theviollg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

64

www.manharaa.com

B.7 p_consumption Struct Reference

The power consumption link list item used in the statisticakr.

#i ncl ude <qot. h>

Collaboration diagram for p_consumption:

Public Attributes

* p_consumptior next

Pointer to the next item in the link list.

* double p_value

Power consumption value.

* doublet

The time period that the collected data correspond to.

B.7.1 Detailed Description

The power consumption link list item used in the statisticakr.

B.7.2 Member Data Documentation

B.7.2.1 p_consumptior p_consumption::next

Pointer to the next item in the link list.

65

www.manharaa.com

B.7.2.2 double p_consumption::p_value

Power consumption value.

B.7.2.3 double p_consumption::t

The time period that the collected data correspond to.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

66

www.manharaa.com

B.8 prio_info Struct Reference

Transport priority information.
#i ncl ude <hdr. h>

Collaboration diagram for prio_info:

Public Attributes

charx tag

Transport type.

double utility

Transport utility.

prio_info x next

prio_info x prev

B.8.1 Detailed Description

Transport priority information.

B.8.2 Member Data Documentation

B.8.2.1 prio_infox prio_info::next

67

www.manharaa.com

B.8.2.2 prio_infox prio_info::prev

B.8.2.3 chak prio_info::tag

Transport type.

B.8.2.4 double prio_info::utility

Transport utility.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

68

www.manharaa.com

B.9 (qot_con_acc Struct Reference

QOT_CONNECT_ACCEPT message.

#i ncl ude <hdr. h>

B.9.1 Detailed Description

QOT_CONNECT_ACCEPT message.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

69

www.manharaa.com

B.10 got_con_rej Struct Reference

QOT_CONNECT_REJECT message.

#i ncl ude <hdr. h>

Public Attributes

* QoTReason reason

Reject reason.

B.10.1 Detailed Description

QOT_CONNECT_REJECT message.

B.10.2 Member Data Documentation

B.10.2.1 QoTReason qot_con_rej::reason

Reject reason.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

70

www.manharaa.com

B.11 qgot_con_req Struct Reference

QOT_CONNECT_REQUEST message.

#i ncl ude <hdr. h>

Public Attributes

» charx tag

Transport type.

B.11.1 Detailed Description

QOT_CONNECT_REQUEST message.

B.11.2 Member Data Documentation

B.11.2.1 chak qot_con_req::tag

Transport type.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

71

www.manharaa.com

B.12 (got_data_snd Struct Reference

QOT_DATA_SEND message.

#i ncl ude <hdr. h>

Public Attributes

» const chak app_flag
» AppDatax app_data
* unsigned got_pkt_id

Qot data packet id.

B.12.1 Detailed Description

QOT_DATA_SEND message.

B.12.2 Member Data Documentation

B.12.2.1 AppData qot_data_snd::app_data

B.12.2.2 const chaf qot_data_snd::app_flag

72

www.manharaa.com

B.12.2.3 unsigned qot_data_snd::qot_pkt_id

Qot data packet id.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/got.ns-2.28/thésish

73

www.manharaa.com

B.13 qot_data_sync_pnt Struct Reference

QOT_DATA_SYNC_POINT message.

#i ncl ude <hdr. h>

Public Attributes

* int credit
* unsigned pkt_id

The ID of the packet that is last received.

B.13.1 Detailed Description

QOT_DATA_SYNC_POINT message.

B.13.2 Member Data Documentation

B.13.2.1 intgot_data_sync_pnt::credit

B.13.2.2 unsigned qot_data_sync_pnt::pkt_id

The ID of the packet that is last received.

The documentation for this struct was generated from tHeviarg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

74

www.manharaa.com

B.14 qot_data_sync_req Struct Reference

QOT_DATA_SYNC_REQUEST message.

#i ncl ude <hdr. h>

B.14.1 Detailed Description

QOT_DATA_SYNC_REQUEST message.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

75

www.manharaa.com

B.15 got_discon_acc Struct Reference

QOT_DISCONNECT_ACCEPT message.

#i ncl ude <hdr. h>

B.15.1 Detailed Description

QOT_DISCONNECT_ACCEPT message.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

76

www.manharaa.com

B.16 qot_discon_req Struct Reference

QOT_DISCONNECT_REQUEST message.

#i ncl ude <hdr. h>

B.16.1 Detailed Description

QOT_DISCONNECT_REQUEST message.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

77

www.manharaa.com

B.17 qot_rem_acc Struct Reference

QOT_RESUME_ACCEPT messsage.

#i ncl ude <hdr. h>

Public Attributes

* int sync_point

B.17.1 Detailed Description

QOT_RESUME_ACCEPT messsage.

B.17.2 Member Data Documentation

B.17.2.1 intgot_rem_acc::sync_point

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

78

www.manharaa.com

B.18 qot_rem_rej Struct Reference

QOT_RESUME_REJECT message.

#i ncl ude <hdr. h>

B.18.1 Detailed Description

QOT_RESUME_REJECT message.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

79

www.manharaa.com

B.19 qot_rem_req Struct Reference

QOT_RESUME_REQUEST message.

#i ncl ude <hdr. h>

Public Attributes

* int sync_point

The sequence number of the qot data packet from where thecmmshould be resumed.

B.19.1 Detailed Description

QOT_RESUME_REQUEST message.

B.19.2 Member Data Documentation

B.19.2.1 intgot_rem_req::sync_point

The sequence number of the qot data packet from where thecoom should be

resumed.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

80

www.manharaa.com

B.20 got_stack Union Reference

The union of possible transport stacks of a QoT node.
#i ncl ude <qot. h>

Collaboration diagram for got_stack:

Public Attributes

stack bt bt

stack_wifi wifi

stack_zigbee zigbee

stack _wusb wusb

B.20.1 Detailed Description

The union of possible transport stacks of a QoT node.

B.20.2 Member Data Documentation

B.20.2.1 stack bt got_stack::bt

B.20.2.2 stack_ wifi qot_stack::wifi

81

www.manharaa.com

B.20.2.3 stack wusb qot_stack::wusb

B.20.2.4 stack_zigbee got_stack::zighee

The documentation for this union was generated from theviofig file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

82

www.manharaa.com

B.21 got_swh_acc Struct Reference

QOT_SWITCH_ACCEPT message.

#i ncl ude <hdr. h>

Public Attributes

» charx tag

Transport type.

B.21.1 Detailed Description

QOT_SWITCH_ACCEPT message.

B.21.2 Member Data Documentation

B.21.2.1 chak got_swh_acc::tag

Transport type.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

83

www.manharaa.com

B.22 got_swh_qry Struct Reference

QOT_SWITCH_QUERY message.

#i ncl ude <hdr. h>

Public Attributes

» SwitchType type

Switch type, upgrade switching or downgrade switching.

B.22.1 Detailed Description

QOT_SWITCH_QUERY message.

B.22.2 Member Data Documentation

B.22.2.1 SwitchType got_swh_qry::type

Switch type, upgrade switching or downgrade switching.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

84

www.manharaa.com

B.23 got_swh_qry_rep Struct Reference

QOT_SWITCH_QUERY_RESPONSE.
#i ncl ude <hdr. h>

Collaboration diagram for got_swh_qry_rep:

Public Attributes

* prio_infox pri_list

Transport information link list.

B.23.1 Detailed Description

QOT_SWITCH_QUERY_RESPONSE.

B.23.2 Member Data Documentation

B.23.2.1 prio_infox qot_swh_qry_rep::pri_list

Transport information link list.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

85

www.manharaa.com

B.24 qgot_swh_rej Struct Reference

QOT_SWITCH_REJECT message.

#i ncl ude <hdr. h>

Public Attributes

» charx tag

Transport type.

B.24.1 Detailed Description

QOT_SWITCH_REJECT message.

B.24.2 Member Data Documentation

B.24.2.1 chak gqot_swh_rej::itag

Transport type.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

86

www.manharaa.com

B.25 qot_swh_req Struct Reference

QOT_SWITCH_REQUEST.

#i ncl ude <hdr. h>

Public Attributes

» charx tag

Transport type.

B.25.1 Detailed Description

QOT_SWITCH_REQUEST.

B.25.2 Member Data Documentation

B.25.2.1 chak qot_swh_req::tag

Transport type.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

87

www.manharaa.com

B.26 qot_trans_info_qry Struct Reference

QOT_TRANSPORT_INFO_QUERY messge content.

#i ncl ude <hdr. h>

Public Attributes

charx tag

int count

double SNR_request

double signal_request

B.26.1 Detailed Description

QOT_TRANSPORT_INFO_QUERY messge content.

B.26.2 Member Data Documentation

B.26.2.1 intgot_trans_info_qry::count

B.26.2.2 double got_trans_info_qry::signal_request

B.26.2.3 double got_trans_info_qry::SNR_request

88

www.manharaa.com

B.26.2.4 chak qot_trans_info_qry::tag

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

89

www.manharaa.com

B.27 qot_trans_info_qry_rep Struct Reference

QOT_TRANSPORT_INFO_QUERY_RESPONSE messge content.

#i ncl ude <hdr. h>

Public Attributes

* int count

double SNR_request

double SNR_response

double signal_request

double signal_response

B.27.1 Detailed Description

QOT_TRANSPORT_INFO_QUERY_RESPONSE messge content.

B.27.2 Member Data Documentation

B.27.2.1 intgot_trans_info_qry_rep::count

B.27.2.2 double qot_trans_info_gry_rep::signal_requds

90

www.manharaa.com

B.27.2.3 double qot_trans_info_qgry_rep::signal_respase

B.27.2.4 double qot_trans_info_qry_rep::SNR_request

B.27.2.5 double got_trans_info_qry_rep::SNR_response

The documentation for this struct was generated from tHeviarg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

91

www.manharaa.com

B.28 qot_trans_gry Struct Reference

QOT_TRANSPORT_QUERY message.

#i ncl ude <hdr. h>

B.28.1 Detailed Description

QOT_TRANSPORT_QUERY message.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

92

www.manharaa.com

B.29 qot_trans_qry_rep Struct Reference

QOT_TRANSPORT_QUERY_RESPONSE messge content.
#i ncl ude <hdr. h>

Collaboration diagram for qot_trans_qry_rep:

Public Attributes

e intnum

* trans_infox head

B.29.1 Detailed Description

QOT_TRANSPORT_QUERY_RESPONSE messge content.

B.29.2 Member Data Documentation

B.29.2.1 trans_info: qot_trans_qry_rep::head

B.29.2.2 intgot_trans_qry_rep::num

The documentation for this struct was generated from tHeviarg file:

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

93

www.manharaa.com

B.30 QoTBrain Class Reference

QoT Brain.
#i ncl ude <qot. h>

Collaboration diagram for QoTBrain:

Public Member Functions

QoTBrain ()

Class constructor.

void setnode (QoTNodenode)

Set the pointer to the QoT node that this QoT brain belongs to.

void settable (RDFtable)

Set the pointer to the Remote Device Table that this QoT lassociates with.

void startQuery (DevTabEntrentry)

Start transport availability query.

void activeHeadChanged (DevTabEnkgntry, SwitchType type)

Static Public Member Functions

« static void calculateUtilitybyPower (shared]

Calculate the utility of a transport by its power consumptio

* static void calculateUtilitybyDatarate (shared)l

94

www.manaraa.com

Calculate the utility of a transport by its data rate.

Public Attributes

* void(x getUtility)(sharedTx)

Private Attributes

* QoTNodex node__

Pointer to the QoT node that this QoT brain belongs to.

* RDT x rd_table

Pointer to the Remote Device Table that this QoT brain assesiwith.

B.30.1 Detailed Description

QoT Brain.

B.30.2 Constructor & Destructor Documentation

B.30.2.1 QoTBrain::QoTBrain ()

Class constructor.

B.30.3 Member Function Documentation

95

www.manharaa.com

B.30.3.1 void QoTBrain::activeHeadChanged (DevTabEntry entry, SwitchType
type

B.30.3.2 static void QoTBrain::calculateUtilitybyDatarate (sharedTx) [stati c]

Calculate the utility of a transport by its data rate.

B.30.3.3 static void QoTBrain::calculateUtilitybyPower (sharedT x) [stati c]

Calculate the utility of a transport by its power consumiptio

B.30.3.4 void QoTBrain::setnode (QoTNode node [i nli ne]

Set the pointer to the QoT node that this QoT brain belongs to.

B.30.3.5 void QoTBrain::settable (RDTx table) [i nl i ne]

Set the pointer to the Remote Device Table that this QoT lassociates with.

B.30.3.6 void QoTBrain::startQuery (DevTabEntry x entry)

Start transport availability query.

Parameters:
entry An RDT entry that includes shared transports that need tdwdravailability

gueries.

96

www.manaraa.com

B.30.4 Member Data Documentation

B.30.4.1 void{ QoTBrain::getUtility)(sharedT x)

B.30.4.2 QoTNode QoTBrain::node_ [pri vat e]

Pointer to the QoT node that this QoT brain belongs to.

B.30.4.3 RDT QoTBrain::rd_table [pri vat e]

Pointer to the Remote Device Table that this QoT brain aasexwith.

The documentation for this class was generated from theviollg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegish

97

www.manharaa.com

B.31 QoTNode Class Reference

QoT node.
#i ncl ude <qot. h>

Collaboration diagram for QoTNode:

Public Member Functions

QoTNode ()

Class constructor.

int command (int argc, const chaconstxargv)

Command function that implements Tcl-C++ interfacing fiims.

transport_stack get_trans_by tag (chas)

Retrieve a transport stack according to the provided string

hdr_qgotx getDummy ()

Retrieve the QoT header stored in the dummy_.

void clearDummy ()

Clear the data stored in the dummy_.

void setDummy (hdr_qothdr)

Set the dummy_.

void setTPM (QTPM«tpm)

98

www.manharaa.com

Set the pointer to a TPM module.

void setApp (Application-app)

Set the pointer to the session layer protocol.

nsaddr_t getDest ()

Retrieve the address of the remote device.

void checkRecvBuff (DevTabEntrentry)

void recv (Packetp, transport_stackstack)

Receive incoming packets.

void sendDown (transport_staek)

Send a QoT packet down to the underlying protocol.

void downRecyv (int size, AppDateappdata, const chaflags=0)

Receive a packet from the session layer protocol.

void linkBreak (Packetp)

Link break handler.

void printLocation ()

Print the coordiates of the transports of this QoT node.

void devDiscover (nsaddr_t dst)

Discover remote device.

void transQuery (nsaddr_t dst, transport_stestiack)

99

www.manaraa.com

QOT_TRANSPORT_QUERY.

void transQueryResponse (Packpt transport_stackstack)

QOT_TRANSPORT_QUERY_RESPONSE.

void transinfoQuery (shareddshare, nsaddr_t dst)

QOT_TRANSPORT_INFO_QUERY.

void transinfoQueryResponse (Packgt, transport_stackstack, double request,

double signal, int count)

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

void connectRequest (shared3hare, nsaddr_t dst)

QOT_CONNECT_REQUEST.

void connectAccept (sharedBhare, nsaddr_t dst)

QOT_CONNECT_ACCEPT.

void connectReject (Packep, transport_stackstack, QoTReasonr)

QOT_CONNECT_REJECT.

void dataSend (DevTabEntrentry)

QOT_DATA_SEND.

void dataSync (DevTabEntrentry)

QOT_DATA_SYNC_POINT.

void switchQuery (DevTabEntryentry, SwitchType type)

100

www.manaraa.com

QOT_SWITCH_QUERY.

void switchQueryResponse (DevTabEntgntry, nsaddr _t dst)

QOT_SWITCH_QUERY_RESPONSE.

void switchRequest (sharedBhare, nsaddr_t dst)

QOT_SWITCH_REQUEST.

void switchAccept (shared¥share, nsaddr_t dst)

QOT_SWITCH_ACCEPT.

void switchReject (shareddshare, nsaddr_t dst)

QOT_SWITCH_REJECT.

void resumeRequest (DevTabEn#gntry, nsaddr_t dst)

QOT_RESUME_REQUEST.

void resumeAccept (DevTabEntrentry, nsaddr_t dst)

QOT_RESUME_ACCEPT.

void resumeReject (sharedEhare, nsaddr_t dst)

QOT_RESUME_REJECT.

void disconnectRequest (shareedhare, nsaddr_t dst)

QOT_DISCONNECT_REQUEST.

void disconnectAccept (sharedEhare, nsaddr_t dst)

QOT_DISCONNECT_ACCEPT.

101

www.manaraa.com

QoTOutQueue checkOutputBuff (nsaddr_t dest)

Retrieve the send buffer for a connection.

transport_stack getStack (chaktag)

Retrieve a transport stack of the QoT node.

void checkCallBack ()

Check callback queue.

void printQoTPacket (hdr_qgethdr)

Print QoT packet information.

Public Attributes
* intbusy_

The flag that identifies if the QoT node is performing transpearilability query.

o StatTimer« s_timer

Statistical timer.

Private Attributes

* hdr_gotx dummy_

The buffer that transfers QoT packet header informatiorhttansport agent when it

creates a packet.

102

www.manharaa.com

The address of the remote device.

transport_stack trans_head

Head of the transport stack link list.

int transport_nn

int do_query

agent_value agent_v
TransportQueryTimes tq_timer

Transport query timer.

QTPMx tpm_

Pointer to a TPM module.

Application* app__

Pointer to the attached session layer protocol.

QoTQueuex recv_buff

QoT receive buffer.

RDT « rd_table

Pointer to the Remote Device Table.

QoTBrainx brain

Pointer to the QoT brain.

CallBackx call_back_h

Head of the callback link list.

103

www.manharaa.com

 CallBacks call_back_t

Tail of the callback link list.

Friends

* class QoTBrain

* class DevTabEntry

* class Application

* class Agent

* class AccessQueryAgent

* class QoTQueryTimer
 class QoTOutQueue

* class TransportQueryTimer

 class StatTimer

B.31.1 Detailed Description

QoT node.

The key component of a QoT node.

B.31.2 Constructor & Destructor Documentation

B.31.2.1 QoTNode::QoTNode ()

Class constructor.

104

www.manharaa.com

B.31.3 Member Function Documentation

B.31.3.1 void QoTNode::checkCallBack ()

Check callback queue.

The master QoT node stops data transfer when conductingpanavailability
gueries. Events during the query process are inserted titbadaqueue. After the avail-

ability queries are done, QoT node checks the callback gieeli@ndle those events.

B.31.3.2 QoTOutQueue QoTNode::checkOutputBuff (nsaddr_t des})

Retrieve the send buffer for a connection.

Parameters:
dest The address of the remote device. This parameter is usedntfidthe connec-

tion.

Returns:

The pointer to the send buffer of the specified connection.

B.31.3.3 void QoTNode::.checkRecvBuff (DevTabEntry entry)
Check out session layer data packets stored in the QoT nodeseebuffer, and
move them to the corresponding send buffer.

Parameters:

entry The Remote Device Table entry that corresponds to the ctionec

105

www.manaraa.com

B.31.3.4 void QoTNode::clearDummy () [i nl i ne]

Clear the data stored in the dummy_.

B.31.3.5 int QoTNode::command (intargc, const charxconstx* argv)

Command function that implements Tcl-C++ interfacing fiimes.

Parameters:

argc Argument count.

argv Argument vector.

B.31.3.6 void QoTNode::connectAccept (shared¥ share nsaddr_tds)

QOT_CONNECT_ACCEPT.

Upon receiving an connection request message, the slave mQdé&s decides

whether to accept the request or not. If accept, responsetiwg function.

Parameters:

share The shared transport that the connection is to be estalllishe

dst The address of the remote device

B.31.3.7 void QoTNode::connectReject (Packet p, transport_stack x stack

QoTReasonr)

QOT_CONNECT_REJECT.

Upon receiving an connection request message, the slave mQdé&s decides

whether.to.accept.the request or not. If reject, respondethis function.

106

www.manaraa.com

Parameters:

p The connect request packet.
stack The transport stack over which the request was received.

r The reason that the request is rejected.

B.31.3.8 void QoTNode::connectRequest (shared¥ share nsaddr_t dsf)

QOT_CONNECT_REQUEST.

After the connection establishment phase, the master Qd& rexjuests for con-

nection if there is any available transport shared with émeate node.

Parameters:
share The shared transport over which the QoT node requests theection to be

established.

dst The address of the remote device.

B.31.3.9 void QoTNode::dataSend (DevTabEntry entry)

QOT_DATA_SEND.

Upon receiving the connect accept from the slave node, tlsem@oT node starts

to transmit data packet by this function.

Parameters:

entry The Remote Device Table entry for this connection.

107

www.manaraa.com

B.31.3.10 void QoTNode::dataSync (DevTabEntry entry)

QOT_DATA_SYNC_POINT.

Once the master node found that the send buffer is full, wests a data synchro-

nization through this function.

Parameters:

entry The Remote Device Table entry for this connection.

B.31.3.11 void QoTNode::devDiscover (nsaddr_dsi)

Discover remote device.

Upon receiving a session layer data packet, the QoT nodeslikethere exists a
connection for the this packet destination. If not, QoTiatés a remote device discovery

process to establish a connection for this packet.

Parameters:

dst The address of the remote deice.

B.31.3.12 void QoTNode::disconnectAccept (shared¥ share nsaddr_tdsj)

QOT_DISCONNECT_ACCEPT.
The slave QoT node accepts the disconnect request.

Parameters:

share The shared transport that this request was received.

dst The address of the remote device.

108

www.manaraa.com

B.31.3.13 void QoTNode::disconnectRequest (shareddshare nsaddr_t dsi)

QOT_DISCONNECT_REQUEST.

The master QoT node requests to disconnect the data transfer

Parameters:

share The shared transport that this request is sent over.

dst The address of the remote device.

B.31.3.14 void QoTNode::downRecv (insize AppData * appdata const char x
flags=0)

Receive a packet from the session layer protocol.

Upon receiving a packet from the session layer, QoT first khécthere already
exists a connection for this packet. If so, QoT node diregtlyves the packet of corre-
sponding send buffer, where the session layer packet isesggohinto QoT data packets.
If not, QoT node temporary stores it in its receive bufferd atarts establishing the con-
nection.

Parameters:

size The size of the session layer data packet.
appdata Pointer to the AppData.

flags Pakcet flags.

B.31.3.15 transport_stack QoTNode::get_trans by tag (char« s)

Retrieve a transport stack according to the provided string

Parameters:

s, String.that.identifis the type of the transport stack, sucW#sl or BT.

109

www.manaraa.com

B.31.3.16 nsaddr_t QoTNode::getDest ()[i nl i ne]

Retrieve the address of the remote device.

B.31.3.17 hdr_qgo& QoTNode::getDummy () [i nl i ne]

Retrieve the QoT header stored in the dummy _.

B.31.3.18 transport_stack QoTNode::getStack (charx tag)

Retrieve a transport stack of the QoT node.

Parameters:

tag String that identifies the type of the transport, such as WIBT.

Returns:

The pointer to the transport stack of the specified type.

B.31.3.19 void QoTNode::linkBreak (Packet« p)

Link break handler.

Each QoT packet includes a pointer to this function. In cdse l;mk break, this

function is called.

Parameters:

p The packet that was being sent when the link was broken.

110

www.manaraa.com

B.31.3.20 void QoTNode::printLocation ()

Print the coordiates of the transports of this QoT node.

B.31.3.21 void QoTNode::printQoTPacket (hdr_qotx hdr)

Print QoT packet information.
A QoT helper function. Output the content of a QoT packet amdard output.

Parameters:
hdr The header of the QoT packet that is to be printed.

B.31.3.22 void QoTNode::recv (Packet p, transport_stack * stack

Receive incoming packets.

the main entrance of a QoT node. Handle incoming packets tnoderlying pro-
tocols.

Parameters:

p The pointer to the received packet.

stack The transport stack over which the packet is received.

B.31.3.23 void QoTNode::resumeAccept (DevTabEntry entry, nsaddr_t dsi

QOT_RESUME_ACCEPT.
The slave QoT node accepts the resume request.

Parameters:

entry.Lhe Remote Device Table entry for this connection.

111

www.manaraa.com

dst The address of the remote device.

B.31.3.24 void QoTNode::resumeReject (shared¥ share nsaddr_t dsf)

QOT_RESUME_REJECT,

The slave QoT node rejects the resume request.

Parameters:

entry The Remote Device Table entry for this connection.

dst The address of the remote device.

B.31.3.25 void QoTNode::resumeRequest (DevTabEntry entry, nsaddr_t dsf)

QOT_RESUME_REQUEST.

After a downgrade transport switching, the master QoT nedeaest to resume the
data transfer.

Parameters:

entry The Remote Device Table entry for this connection.

dst The address of the remote device.

B.31.3.26 void QoTNode::sendDown (transport_stack s)

Send a QoT packet down to the underlying protocol.

Parameters:
s The transport stack that is used to send the packet.

112

www.manaraa.com

B.31.3.27 void QoTNode::setApp (Application app) [i nli ne]

Set the pointer to the session layer protocol.

B.31.3.28 void QoTNode::setDummy (hdr_qgot hdr)

Set the dummy_.

B.31.3.29 void QoTNode::setTPM (QTPM« tpm) [i nli ne]

Set the pointer to a TPM module.

B.31.3.30 void QoTNode::switchAccept (sharedk share nsaddr_t dsf)

QOT_SWITCH_ACCEPT.
The slave QoT node accepts the transport switching request.

Parameters:

share The shared transport that the data traffic is going to be beftdo.

dst The address of the remote device.

B.31.3.31 void QoTNode::switchQuery (DevTabEntry« entry, SwitchTypetypée

QOT_SWITCH_QUERY.

Before an upgrade transport switching, the master QoT nestegfiiery the avail-

ability of the desired transport.

113

www.manaraa.com

Parameters:

entry The Remote Device Table for this connection.

type Transport switching type.

B.31.3.32 void QoTNode::switchQueryResponse (DevTabEmt x entry, nsaddr_t
dsi
QOT_SWITCH_QUERY_RESPONSE.

Upon successfully received a switch query message, the €aV node responses

by this function.

Parameters:

entry The Remote Device Table for this connection.

dst The address of the remote device.

B.31.3.33 void QoTNode::switchReject (shared® share nsaddr_tdsi)

QOT_SWITCH_REJECT.

The slave QoT node rejects the transport switching request.

Parameters:

share The shared transport over which the request was received.

dst The address of the remote device.

B.31.3.34 void QoTNode::switchRequest (shared¥ share nsaddr_tdsi)

QOT._SWITCH..REQUEST.

114

www.manaraa.com

Upon receiving the QOT_SWITCH_QUERY_RESPONSE, the ma3ter node

requests a transport switching over the new transport.

Parameters:

share The shared transport that the data traffic is going to be heftdo.

dst The address of the remote device.

B.31.3.35 void QoTNode::transinfoQuery (sharedTx share nsaddr_tdsi)

QOT_TRANSPORT_INFO_QUERY.

The master QoT node conducts periodic transport avaitalglieries on all the

shared transports.

Parameters:

share The shared transport that is to be queried.

dst The address of the queried transport on the remote device.

B.31.3.36 void QoTNode::transinfoQueryResponse (Packetp, transport_stack x
stack doublerequest double signal, int count)
QOT_TRANSPORT_INFO_QUERY_RESPONSE.

Upon receiving a periodic transport availability querye #lave QoT node sends a

response message.

Parameters:

p The received packet.
stack The transport stack that the query message was received.

signal The signal request.

115

www.manaraa.com

count The sequence number for this query message. Used to exantireequery

message has expired.

B.31.3.37 void QoTNode::transQuery (nsaddr_tdst transport_stack x stack

QOT_TRANSPORT_QUERY.

During the process of connection establishment, the m&si@rnode queries all

the supported transport to find out the shared transporistingétremote device.

Parameters:

dst The address of the remote device.

stack The transport stack that is to be queried.

B.31.3.38 void QoTNode::transQueryResponse (Packetp, transport_stack x
stack
QOT_TRANSPORT_QUERY_RESPONSE.

Upon receiving a transport query message from the masterr@de, the slave

QoT node sends a response message.

Parameters:

p The received packet.

stack The transport stack through which the transport query ngessareceived.

B.31.4 Friends And Related Function Documentation

116

www.manaraa.com

B.31.4.1

B.31.4.2

B.31.4.3

B.31.4.4

B.31.4.5

B.31.4.6

B.31.4.7

B.31.4.8

friend class AccessQueryAgen{ f ri end]

friend class Agent[fri end]

friend class Application [f ri end]

friend class DevTabEntry [f ri end]

friend class QoTBrain [fri end]

friend class QoTOutQueue[f ri end]

friend class QoTQueryTimer [fri end]

friend class StatTimer [f ri end]

117

www.manharaa.com

B.31.4.9 friend class TransportQueryTimer [f ri end]

B.31.5 Member Data Documentation

B.31.5.1 agent_value QoTNode::agent_\ pri vat e]

B.31.5.2 Application QoTNode::app_ [pri vat e]

Pointer to the attached session layer protocol.

B.31.5.3 QoTBrain QoTNode::brain [pri vat e]

Pointer to the QoT brain.

B.31.5.4 int QoTNode::busy

The flag that identifies if the QoT node is performing transpwailability query.

B.31.5.5 CallBack QoTNode::call_back h [pri vat e]

Head of the callback link list.

118

www.manharaa.com

B.31.5.6 CallBack QoTNode::call_back t [pri vat e]

Tail of the callback link list.

B.31.5.7 intQoTNode::do_query [pri vat e]

B.31.5.8 nsaddr_t QoTNode::dst_[pri vat e]

The address of the remote device.

B.31.5.9 hdr_qo& QoTNode::dummy_ [pri vat e]

The buffer that transfers QoT packet header informatiohédransport agent when

it creates a packet.

B.31.5.10 RDF& QoTNode::rd_table [pri vat e]

Pointer to the Remote Device Table.

B.31.5.11 QoTQueue QoTNode::recv_buff [pri vat e]

QoT receive buffer.

119

www.manharaa.com

B.31.5.12 StatTimer QoTNode::s_timer

Statistical timer.

B.31.5.13 QTPM QoTNode::tpm_ [pri vat e]

Pointer to a TPM module.

B.31.5.14 TransportQueryTimerx QoTNode::tq_timer [pri vat e]

Transport query timer.

B.31.5.15 transport_stack QoTNode::trans_head [pri vat e]

Head of the transport stack link list.

B.31.5.16 int QoTNode::transport_nn [pri vat e]

The documentation for this class was generated from thevioll file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

120

www.manharaa.com

B.32 QoTOutQueue Class Reference

The send queue within a QoT node.
#i ncl ude <qot. h>
Inherits QoTQueue.

Inheritance diagram for Qo TOutQueue:Collaboration diagfor QoTOutQueue:

Public Member Functions

QoTOutQueue (DevTabEntrentry)

Class constructor.

int enque (app_dated)

Enqueue the session layer packets into the queue.

void send ()

Send the QoT packets in the send buffer.

void deque (unsigned id)

Dequeue the acknowledged packets in the queue.

void insertSend (hdr_gehdr)
hdr_gotx getNext ()

Return the next available packet.

void set_entry (DevTabEntrentry)

Set the pointer entry_ to an entry in the Remote Device Table.

121

www.manaraa.com

* int my_credit ()

* void setCredit (unsigned credit)
* int check_infinite_send ()

» app_data check_app_buff ()

Return the pointer to app_buff.

* unsigned getPktID ()

Return the next available QoT packet ID.

* void syncCheck (unsigned id)

The synchronization check at the QoT layer of the sending.nod

* void requestSync ()

Request data synchronization.

* void flushQueue ()

Private Member Functions
* hdr_gotx remove_head ()

Remote queue head.

* int createHdr (int size, app_datdata)

Create a new QoT packet.

* void retransmit ()

Retransmit the packets in the send buffer.

122

www.manharaa.com

Private Attributes

int infinite_send_

Infinite data available to send.

app_data app_buff

A buffer for app_data.

DevTabEntry« entry

Pointer to the entry that this queue belongs to in the Remetdde Table.

hdr_gotx head_

Head of the queue.

hdr_qotx tail_

Tail of the queue.

hdr_qotx send_

Pointer to the QoT data packet that is ready to be sent next.

unsigned qot_pkt_id

QoT data packet id.

int credit_

Friends

* class DevTabEntry

 class QoTNode

123

www.manharaa.com

B.32.1 Detailed Description

The send queue within a QoT node.

QoT node creates a send queue for each connection whengleatmreliable

transport protocol type, such as TCP.

B.32.2 Constructor & Destructor Documentation

B.32.2.1 QoTOutQueue::QoTOutQueue (DevTabEntry entry)

Class constructor.

B.32.3 Member Function Documentation

B.32.3.1 app_data QoTOutQueue::check app_buff () [i nl i ne]

Return the pointer to app_buff.

B.32.3.2 int QoTOutQueue::check infinite_send ()[i nl i ne]

If the traffic generator is FTP, this flag is set to 1.

B.32.3.3 int QoTOutQueue::createHdr (intsize app_datax data) [pri vat e]

Create a new QoT packet.

In ns-2, data packets are actually created at the transpat, ITCP or UDP. This

function virtually creates a new QoT packet in the sense ttiatpacket is not actually

124

www.manaraa.com

created here. In stead, this function creates a new QoT hetrdeture, and fills corre-
sponding fields. When the data packet is actually createldeatransport layer, the QoT

header created here is copied to the packet.

Parameters:

size The size of the QoT data packet.

data The app_data buffer that stores the destination addre$® &etssion layer data

packets.

Returns:

return 1 if the queue is already full, 0 otherwise.

B.32.3.4 void QoTOutQueue::deque (unsigneitl)

Dequeue the acknowledged packets in the queue.

Parameters:

id The sequence number of the packet that the receiving nodetsved.

B.32.3.5 int QoTOutQueue::enque (app_data d) [virtual]

Enqueue the session layer packets into the queue.

Session layer packets are segmented to fit the size of Qo Eisdokfore enqueue

into the send buffer.

Reimplemented from QoTQueue.

B.32.3.6 void QoTOutQueue::flushQueue ()

125

www.manaraa.com

B.32.3.7 hdr_go& QoTOutQueue::getNext ()

Return the next available packet.

Return the packet that is pointed by send_ if it is not equalitd L, otherwise

return NULL. If send__is not equal to NULL, it moves towardg tdor one packet.

B.32.3.8 unsigned QoTOutQueue::getPktID ()[i nl i ne]
Return the next available QoT packet ID.

QoT assigns a sequence number to each data packet.

B.32.3.9 void QoTOutQueue::insertSend (hdr_qot hdr)

The inserted packet will be the next available packet to send

B.32.3.10 int QoTOutQueue::my_credit () [i nl i ne]

B.32.3.11 hdr_got QoTOutQueue::remove_head () [pri vat e]

Remote queue head.
Removes the head of the queue. Returns the original quede hea

Returns:

hdr_qot The QoT data packet that was the head of the queue.

Reimplemented from QoTQueue.

B.32.3.12 void QoTOutQueue::requestSync ()

Request data synchronization.

126

www.manaraa.com

The QoT layer at the sending node requests a data synchtionizace its send

buffer is full.

B.32.3.13 void QoTOutQueue::retransmit () [pri vat e]

Retransmit the packets in the send buffer.

Retransmit the un-acknowledged and new packets.

B.32.3.14 void QoTOutQueue::send ()

Send the QoT packets in the send buffer.

Once the send buffer is full, the QoT layer on the sending rmedeests a data

synchronization to release the acknowledged packets.

B.32.3.15 void QoTOutQueue::set_entry (DevTabEntry entry) [i nl i ne]

Set the pointer entry _to an entry in the Remote Device Table.

B.32.3.16 void QoTOutQueue::setCredit (unsignedredit) [i nl i ne]

B.32.3.17 void QoTOutQueue::syncCheck (unsigned)

The synchronization check at the QoT layer of the sendingnod

The QoT layer at the sending node requests a data synchtionizace its send
buffer is full. Upon receiving the synchronization packeinh the receiving node, QoT
removes acknowledged packets in its send buffer. If nevs glod available in the send
buffer after the data synchronization, QoT moves the bufiadow and continue sending

new packets.

127

www.manaraa.com

Parameters:
id The sequence number of the packet that the QoT layer on tee&img node last

received.

B.32.4 Friends And Related Function Documentation

B.32.4.1 friend class DevTabEntry [fri end]

B.32.4.2 friend class QoTNode[f ri end]

B.32.5 Member Data Documentation

B.32.5.1 app_data QoTOutQueue::app_buff [pri vat e]

A buffer for app_data.

This buffer is used to store a app_data information, whiaksed in case of infinite

send of session layer traffic.

B.32.5.2 int QoTOutQueue::credit_ [pri vat €]

B.32.5.3 DevTabEntry QoTOutQueue::entry [pri vat e]

Pointer to the entry that this queue belongs to in the Remeteade Table.

128

www.manaraa.com

B.32.5.4 hdr_go& QoTOutQueue::head [pri vat €]

Head of the queue.

Reimplemented from QoTQueue.

B.32.5.5 int QoTOutQueue::infinite_send_[pri vat e]

Infinite data available to send.

B.32.5.6 unsigned QoTOutQueue::qot_pkt id[pri vat €]

QoT data packet id.

Starts from 0.

B.32.5.7 hdr_go& QoTOutQueue::send_ [pri vat e]

Pointer to the QoT data packet that is ready to be sent next.

B.32.5.8 hdr_qgo& QoTOutQueue::tail [pri vat e]

Tail of the queue.
Reimplemented from QoTQueue.

The documentation for this class was generated from theviolg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegish

129

www.manaraa.com

B.33 QoTPacket Union Reference

Qot packet type.
#i ncl ude <hdr. h>

Collaboration diagram for QoTPacket:

Public Attributes
* got_con_req con_req

QOT_CONNECT_REQUEST.

 got_con_acc con_acc

QOT_CONNECT_ACCEPT.

got_con_rej con_rej

QOT_CONNECT_REJECT.

got_discon_req discon_req

QOT_DISCONNECT _REQUEST.

got_discon_acc discon_acc

QOT_DISCONNECT_ACCEPT.

got_data_snd data_snd

QOT_DATA_SEND.

got_data_sync_pntdata_sync_pnt

130

www.manharaa.com

QOT_DATA_SYNC_POINT.

» (ot_data_sync_req data_sync_req

QOT_DATA_SYNC_REQUEST.

» got_swh_qry swh_qry

QOT_SWITCH_QUERY.

* gqot_swh_qry_repswh_qry_rep

QOT_SWITCH_QUERY_RESPONSE.

» got_swh_reqswh_req

QOT_SWITCH_REQUEST.

* got_swh_acc swh_acc

QOT_SWITCH_ACCEPT.

e got_swh_rej swh_rej

QOT_SWITCH_REJECT.

 got_rem_req rem_req

QOT_RESUME_REQUEST.

* got_rem_acc rem_acc

QOT_RESUME_ACCEPT.

e got_rem_rejrem_rej

QOT_RESUME_REJECT.

131

www.manharaa.com

« got_trans_qry trans_qry

QOT_TRANSPORT_QUERY.

* qot_trans_qry_rep trans_qry_rep

QOT_TRANSPORT_QUERY_RESPONSE.

* got_trans_info_qry trans_info_qry

QOT_TRANSPORT_INFO_QUERY.

» got_trans_info_qry_rep trans_info_qry_rep

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

B.33.1 Detailed Description

Qot packet type.

B.33.2 Member Data Documentation

B.33.2.1 got_con_acc QoTPacket::con_acc

QOT_CONNECT_ACCEPT.

B.33.2.2 got_con_rej QoTPacket::con_rej

QOT_CONNECT_REJECT.

132

www.manharaa.com

B.33.2.3 got_con_req QoTPacket::con_req

QOT_CONNECT_REQUEST.

B.33.2.4 got_data_snd QoTPacket::data_snd

QOT_DATA_SEND.

B.33.2.5 got_data_sync_pnt QoTPacket::data_sync_pnt

QOT_DATA_SYNC_POINT.

B.33.2.6 got_data_sync_req QoTPacket::data_sync_req

QOT_DATA_SYNC_REQUEST.

B.33.2.7 qgot_discon_acc QoTPacket::discon_acc

QOT_DISCONNECT_ACCEPT.

B.33.2.8 qgot_discon_req QoTPacket::discon_req

QOT_DISCONNECT_REQUEST.

133

www.manharaa.com

B.33.2.9 qot_rem_acc QoTPacket::rem_acc

QOT_RESUME_ACCEPT.

B.33.2.10 got_rem_rej QoTPacket::rem_rej

QOT_RESUME_REJECT.

B.33.2.11 got_rem_req QoTPacket::rem_req

QOT_RESUME_REQUEST.

B.33.2.12 got_swh_acc QoTPacket::swh_acc

QOT_SWITCH_ACCEPT.

B.33.2.13 got_swh_qry QoTPacket::swh_qry

QOT_SWITCH_QUERY.

B.33.2.14 qgot_swh_qry_rep QoTPacket::swh_qry_rep

QOT_SWITCH_QUERY_RESPONSE.

134

www.manharaa.com

B.33.2.15 got_swh_rej QoTPacket::swh_rej

QOT_SWITCH_REJECT.

B.33.2.16 got_swh_req QoTPacket::swh_req

QOT_SWITCH_REQUEST.

B.33.2.17 qgot_trans_info_qry QoTPacket::trans_info_qy

QOT_TRANSPORT_INFO_QUERY.

B.33.2.18 qot_trans_info_qry_rep QoTPacket::trans_ind_qry_rep

QOT_TRANSPORT_INFO_QUERY_RESPONSE.

B.33.2.19 qot_trans_qry QoTPacket::trans_qry

QOT_TRANSPORT_QUERY.

B.33.2.20 qot_trans_qry_rep QoTPacket::trans_qry_rep

QOT_TRANSPORT_QUERY_RESPONSE.

The documentation for this union was generated from thevioiig file:

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

135

www.manaraa.com

B.34 QoTQueue Class Reference

the super class for the receive and send buffers within a Qo€.n
#i ncl ude <qot. h>
Inherited by QoTOutQueue.

Inheritance diagram for QoTQueue:Collaboration diagrantfoTQueue:

Public Member Functions

QoTQueue (QoTNodenode)

Class constructore.

virtual void enque (app_datalata)

Engqueue the received session layer packets into the queue.

virtual app_data deque (void)

Dequeue a packets from the queue.

int removePktWithDst (DevTabEntrsentry)

Remove packets according to a destination from the queue.

intlen ()

Returns the length of the queue.

Protected Attributes

 intlen_
136

www.manaraa.com

The length of the queue.

e intlimit_

The maximum length of the queue allowed.

* double timeout_

Private Member Functions
» app_data remove_head ()

Removes the head of the queue, returns the original heac afubue.

* void purge (void)

* void verifyQueue (void)
Private Attributes

* QoTNodex node_

The linakge to the QoT node that this queue belongs to.

* app_data head__

The head of the queue.

* app_data tail_

The tail of teh queue.

B.34.1 Detailed Description

the super class for the receive and send buffers within a Q0E€.n

137

www.manharaa.com

B.34.2 Constructor & Destructor Documentation

B.34.2.1 QoTQueue::QoTQueue (QoTNode node

Class constructore.

B.34.3 Member Function Documentation

B.34.3.1 virtual app_datax QoTQueue::deque (void) [vi rt ual]

Dequeue a packets from the queue.

B.34.3.2 virtual void QoTQueue::enque (app_data data) [vi rtual]

Enqueue the received session layer packets into the queue.

Reimplemented in QoTOutQueue.

B.34.3.3 intQoTQueue:len () [inline]

Returns the length of the queue.

B.34.3.4 void QoTQueue::purge (void) [pri vat e]

138

www.manharaa.com

B.34.3.5 app_data QoTQueue::remove _head () [pri vat e]

Removes the head of the queue, returns the original heae gjutbue.

Reimplemented in QoTOutQueue.

B.34.3.6 int QoTQueue::removePktWithDst (DevTabEntryx entry)

Remove packets according to a destination from the queue.

After a QoT node established a connection with a remote ribtkrnoves session
layer packets that are destined to the remote node from teevecbuffer, and insert the

packets into the corresponding send buffer.

Parameters:
entry The entry in the Remote Device Table for this connection. @Qodle retrives

the destination address from this entry.

B.34.3.7 void QoTQueue::verifyQueue (void) [pri vat €]

B.34.4 Member Data Documentation

B.34.4.1 app_data QoTQueue::head_ [pri vat €]
The head of the queue.

Reimplemented in QoTOutQueue.

B.34.4.2 int QoTQueue:len_ [prot ect ed]

The length of the queue.

139

www.manaraa.com

B.34.4.3 int QoTQueue::limit_ [prot ect ed]

The maximum length of the queue allowed.

B.34.4.4 QoTNode QoTQueue::node_ [pri vat e]

The linakge to the QoT node that this queue belongs to.

B.34.4.5 app_data QoTQueue::tail_ [pri vat e]

The tail of teh queue.

Reimplemented in QoTOutQueue.

B.34.4.6 double QoTQueue::timeout_[pr ot ect ed]

The documentation for this class was generated from theviioll file:

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

140

www.manharaa.com

B.35 QTPM Class Reference

QoT TPM module.
#i ncl ude <qot. h>

Collaboration diagram for QTPM:

Public Member Functions

QTPM ()

Class constructor.

virtual void sendmsg (int sz, AppDa#al, const chaxflags=0)

Send message down.

virtual void sendmsg (int nbytes, const chkélags=0)

Send message down.

void setNode (QoTNodenode)

Set pointer to the attached QoT node.

Public Attributes

e inti

Protected Member Functions

* int command (int argc, const chaconstxargv)

141

www.manharaa.com

Tcl-C++ interfacing function.

Private Attributes

* QoTNodex node__

Pointer to the QoT node that this TPM is attached to.

B.35.1 Detailed Description

QoT TPM module.

B.35.2 Constructor & Destructor Documentation

B.35.2.1 QTPM:QTPM ()

Class constructor.

B.35.3 Member Function Documentation

B.35.3.1 int QTPM::command (int argc, const charxconstx argv) [pr ot ect ed]

Tcl-C++ interfacing function.

142

www.manharaa.com

B.35.3.2 virtual void QTPM::sendmsg (intnbytes const char« flags= 0)

[virtual]

Send message down.
This function is used by application layer to send data down.

Parameters:

nbytes The size of the packet.

flags Flags

B.35.3.3 virtual void QTPM::sendmsg (intsz AppData * d, const charx flags= 0)

[virtual]

Send message down.

This function is used by application layer to send data down.

Parameters:

sz The size of the packet.
d AppData

flags Flags

B.35.3.4 void QTPM::setNode (QoTNode: node [i nli ne]

Set pointer to the attached QoT node.

B.35.4 Member Data Documentation

143

www.manaraa.com

B.35.4.1 intQTPM:i

B.35.4.2 QoTNode QTPM:node_ [pri vate]

Pointer to the QoT node that this TPM is attached to.

The documentation for this class was generated from theviioll file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

144

www.manharaa.com

B.36 RDT Class Reference

Remote Device Table.
#i ncl ude <qot. h>

Collaboration diagram for RDT:

Public Member Functions

RDT ()

Class constructor.

void setnode (QoTNodenode)

Set the pointer to the QoT node that this table belongs to.

QoTNodex node ()

Retrieve the pointer to the QoT node that this table beloags t

DevTabEntry« getTabEntry (nsaddr_t id)

Retrieve the table entry identified by the remote device ID.

DevTabEntry« checkTabEntry (nsaddr_t id)

Check if there exists a table entry with the specified remeticd ID.

* int removeTabEntry (nsaddr_t id)

Remove the table entry from the link list.

QoTBrainx getBrain ()

145

www.manaraa.com

Return the pointer to the QoTBrain of the QoT node.

Private Member Functions

» DevTabEntry« createTabEntry (nsaddr_t id)

Create a table entry with the specified remote address inahie t

Private Attributes

» DevTabEntry« head_

Head of the table entry link list.

» DevTabEntryx tail_

Tail of the table entry link list.

* QoTNodex node__

Pointer to the QoT node that this table belongs to.

* QoTBrainx brain_

Pointer to the QoTBrain of the QoT node.

Friends

 class QoTNode

B.36.1 Detailed Description

Remote Device Table.

146

www.manharaa.com

B.36.2 Constructor & Destructor Documentation

B.36.2.1 RDT:RDT() [inline]

Class constructor.

B.36.3 Member Function Documentation

B.36.3.1 DevTabEntry RDT::checkTabEntry (nsaddr_t id)

Check if there exists a table entry with the specified remetece ID.

B.36.3.2 DevTabEntry RDT::createTabEntry (nsaddr_t id) [pri vat €]

Create a table entry with the specified remote address iratie.t

Parameters:

id The address of the remote device of the connection.

Returns:

The handler to the table entry with the specified remote @estidress.

B.36.3.3 QoTBraink RDT::getBrain () [inline]

Return the pointer to the QoTBrain of the QoT node.

147

www.manaraa.com

B.36.3.4 DevTabEntry RDT::getTabEntry (nsaddr_t id)

Retrieve the table entry identified by the remote device ID.

Return the table entry identified by the remote device ID.dfsach entry exists,
create one.

Parameters:

id The address and port number of the remote device.

Returns:
The pointer to the table entry identified by the specified ID.

B.36.3.5 QoTNode RDT::node () [i nli ne]

Retrieve the pointer to the QoT node that this table beloogs t

B.36.3.6 int RDT::removeTabEntry (nsaddr_tid)

Remove the table entry from the link list.

Parameters:
id The address and port number of the remote device.

Returns:

0 for successful removal, 1 otherwise.

B.36.3.7 void RDT::sethode (QoTNode nodg [i nli ne]

Set the pointer to the QoT node that this table belongs to.

148

www.manaraa.com

B.36.4 Friends And Related Function Documentation

B.36.4.1 friend class QoTNode[fri end]

B.36.5 Member Data Documentation

B.36.5.1 QoTBrain« RDT::brain_ [pri vat e]

Pointer to the QoTBrain of the QoT node.

B.36.5.2 DevTabEntry RDT::head_ [pri vat e]

Head of the table entry link list.

B.36.5.3 QoTNode RDT::node_ [pri vat €]

Pointer to the QoT node that this table belongs to.

B.36.5.4 DevTabEntry RDT::tail_ [pri vat e]

Tail of the table entry link list.

The documentation for this class was generated from theviollg file:

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegsish

149

www.manaraa.com

B.37 sharedT Struct Reference

Shared transport between two communicating QoT nodes.
#i ncl ude <qot. h>

Collaboration diagram for sharedT:

Public Member Functions

* int getCount ()

Return the value of the current query sequency number.

* void incrCount ()

Increment the value of the query sequency number by 1.

Public Attributes

charx tag_

The type of this transport, such as WIFI, BT, WUSB or ZIGBEE.

transport_stack stack_

The pointer to the actual transport stack.

ns_addr_tdest_

The address and the port number of the same type of transpdheoreceiving node.

u_char gresults_

150

www.manharaa.com

The query interval for this transport.

double power_consumption_

The power consumption of this transport, in watts.

double radius_

The radius of the signal transmission of this transport.

double data_rate

The data rate that this transport can support.

double utility_
double throughput

The measured effective throughput of this transport.

double delay

The measured delay on packets transmission.

double jitter

The jitter of packets tranfer.

double signal

The signal strength when sending packets of this transport.

int status_

int p_query

int query_count

the sequence number of the transport availablility query.

151

www.manharaa.com

* QueryTimerx gtimer

DevTabEntry« entry

Linkage to the entry of the Remote Device Table.

AccessQueryAgent agent

Linkage to the access query agent.

sharedT« prev_

Linkage to the previous shared transport.

shared T« next_

Linkage to the next shared transport.

B.37.1 Detailed Description

Shared transport between two communicating QoT nodes.

This struct records information of a shared transport betwieyo communicating
QoT nodes.

B.37.2 Member Function Documentation

B.37.2.1 intsharedT::getCount () [i nli ne]

Return the value of the current query sequency number.

152

www.manharaa.com

B.37.2.2 void sharedT::incrCount () [i nl i ne]

Increment the value of the query sequency number by 1.

B.37.3 Member Data Documentation

B.37.3.1 AccessQueryAgentsharedT::agent

Linkage to the access query agent.

An access query agent is responsible for the decision makilatged issues of a
QoT connection, such as predicting the availability of aretidransport and calculating

the dynamic transport query intervals.

B.37.3.2 double sharedT::data_rate

The data rate that this transport can support.

B.37.3.3 double sharedT::delay

The measured delay on packets transmission.

B.37.3.4 ns_addr_t sharedT::dest_

The address and the port number of the same type of transpdheoreceiving

node.

153

www.manaraa.com

B.37.3.5 DevTabEntry sharedT::entry_

Linkage to the entry of the Remote Device Table.

The QoT node establishes an entry in the Remote Device TatbéaEh connection.

An Entry records information of the shared transports f@& tlonnection.

B.37.3.6 double sharedT::jitter

The jitter of packets tranfer.

B.37.3.7 sharedk sharedT::next_

Linkage to the next shared transport.

B.37.3.8 intsharedT::p_query

B.37.3.9 double sharedT::power_consumption_

The power consumption of this transport, in watts.

B.37.3.10 shared¥ sharedT::prev_

Linkage to the previous shared transport.

The shared transports of this QoT connection are linkedthegeinder the corre-

sponding entry in the Remote Device Table.

154

www.manaraa.com

B.37.3.11 u_char sharedT::gresults_

B.37.3.12 QueryTimek sharedT::qtimer

B.37.3.13 int sharedT::query_count

the sequence number of the transport availablility query.

This sequence number is used to exam if a received transoldlaility query has

been expired or not.

B.37.3.14 double sharedT::query_interval_

The query interval for this transport.

B.37.3.15 double sharedT::radius_

The radius of the signal transmission of this transport.

B.37.3.16 double sharedT::signal

The signal strength when sending packets of this transport.

B.37.3.17 transport_stack sharedT::stack _

The pointer to the actual transport stack.

155

www.manaraa.com

B.37.3.18 int sharedT::status_

B.37.3.19 chax sharedT::tag_

The type of this transport, such as WIFI, BT, WUSB or ZIGBEE.

B.37.3.20 double sharedT::throughput

The measured effective throughput of this transport.

B.37.3.21 double sharedT::utility

The documentation for this struct was generated from tHeviarg file:

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

156

www.manharaa.com

B.38 stack bt Struct Reference

Pointers to transport stacks of Bluetooth.

#i ncl ude <qot. h>

Public Attributes

o LL xl

BNEP x bnep
L2CAP x |12cap
LMP x Imp

Baseband bb

B.38.1 Detailed Description

Pointers to transport stacks of Bluetooth.

B.38.2 Member Data Documentation

B.38.2.1 Basebandstack bt::bb

B.38.2.2 BNER stack_bt::bnep

157

www.manharaa.com

B.38.2.3 L2CARk« stack_bt::I2cap

B.38.2.4 LLx« stack_bt:ll

B.38.2.5 LMPx stack_bt::Imp

The documentation for this struct was generated from tHeviarg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

158

www.manharaa.com

B.39 stack_ wifi Struct Reference

Pointers to transport stacks of WiFi.

#i ncl ude <qot. h>

Public Attributes

o LL Il
* PriQueuex ifq

* WirelessChannel channel

B.39.1 Detailed Description

Pointers to transport stacks of WiFi.

B.39.2 Member Data Documentation

B.39.2.1 WirelessChannel stack_wifi::channel

B.39.2.2 PriQueue stack_wifi::ifg

B.39.2.3 LLx stack_wifi::ll

The documentation for this struct was generated from tHeviarhg file:

159

www.manharaa.com

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

160

www.manharaa.com

B.40 stack wusb Struct Reference

Pointers to transport stacks of WUSB.

#i ncl ude <qot. h>

Public Attributes

o LL Il
* PriQueuex ifq

* WirelessChannel channel

B.40.1 Detailed Description

Pointers to transport stacks of WUSB.

B.40.2 Member Data Documentation

B.40.2.1 WirelessChanne{ stack_wusb::channel

B.40.2.2 PriQueue stack_wusb::ifq

B.40.2.3 LLx stack_wusb::ll

The documentation for this struct was generated from tHeviarhg file:

161

www.manharaa.com

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

162

www.manharaa.com

B.41 stack_zigbee Struct Reference

Pointers to transport stacks of ZigBee.

#i ncl ude <qot. h>

Public Attributes

o LL Il
* PriQueuex ifq

* WirelessChannel channel

B.41.1 Detailed Description

Pointers to transport stacks of ZigBee.

B.41.2 Member Data Documentation

B.41.2.1 WirelessChannel stack_zigbee::channel

B.41.2.2 PriQueue stack_zigbee::ifq

B.41.2.3 LLx stack_zigbee::ll

The documentation for this struct was generated from tHeviarhg file:

163

www.manharaa.com

 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

164

www.manharaa.com

B.42 StatTimer Class Reference

Statistical timer.
#i ncl ude <qot. h>

Collaboration diagram for StatTimer:

Public Member Functions

» StatTimer (QoTNoden)

Class constructor.

* void printThroughput ()

Output the throughput statistical results to a file.

* void printPower ()

Output the power consumption statistical results to a file.

Protected Member Functions

* void expire (Evente)

Protected Attributes

e QoTNodex node

Pointer to the QoT node that this timer belongs to.

e double interval

165

www.manharaa.com

The time interval that this timer collects data.

intt

A temporary variable to save cumulative throughput.

double p

A temporary variable to save cumulative power consumption.

charx tag

throughput t_head

Link list head for collected throughput data.

throughput« t_tail

Link list tail for collected throughput data.

* p_consumptior p_head

Link list head for collected power consumption data.

p_consumptior p_tail

Link list tail for collected power consumption data.

Friends

 class QoTNode

B.42.1 Detailed Description

Statistical timer.

and the power consumption over tintleeaQoT layer.

166

www.manharaa.com

B.42.2 Constructor & Destructor Documentation

B.42.2.1 StatTimer::StatTimer (QoTNodex n) [i nli ne]

Class constructor.

Parameters:

n Pointer to the QoT node that this timer belongs to.

B.42.3 Member Function Documentation

B.42.3.1 void StatTimer::expire (Eventx €) [pr ot ect ed]

Parameters:

e Event handler.

B.42.3.2 void StatTimer::printPower ()

Output the power consumption statistical results to a file.

B.42.3.3 void StatTimer::printThroughput ()

Output the throughput statistical results to a file.

B.42.4 Friends And Related Function Documentation

167

www.manharaa.com

B.42.4.1 friend class QoTNode[fri end]

B.42.5 Member Data Documentation

B.42.5.1 double StatTimer::interval [pr ot ect ed]

The time interval that this timer collects data.

B.42.5.2 QoTNode StatTimer::node [pr ot ect ed]

Pointer to the QoT node that this timer belongs to.

B.42.5.3 double StatTimer::p [pr ot ect ed]

A temporary variable to save cumulative power consumption.

B.42.5.4 p_consumption StatTimer::;p_head [pr ot ect ed]

Link list head for collected power consumption data.

B.42.5.5 p_consumption StatTimer::p_tail [pr ot ect ed]

Link list tail for collected power consumption data.

168

www.manaraa.com

B.42.5.6 int StatTimer::t [pr ot ect ed]

A temporary variable to save cumulative throughput.

B.42.5.7 throughput« StatTimer::t_head [prot ect ed]

Link list head for collected throughput data.

B.42.5.8 throughput« StatTimer::t_tail [pr ot ect ed]

Link list tail for collected throughput data.

B.42.5.9 chak StatTimer::tag [pr ot ect ed]

The documentation for this class was generated from theviioll file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

169

www.manharaa.com

B.43 TAM Class Reference

QoT TAM module.
#i ncl ude <qot. h>

Collaboration diagram for TAM:

Public Member Functions

TAM ()

Class constructor.

void recv (int nbytes, Packep)

Receive packets from the underlying transport layer.

transport_stack transport ()

Retrieve the pointer to the attached transport.

void setTran (transport_staek)

Set the pointer to the the attached transport.

void setNode (QoTNodenode)

Set the pointer to the attached QoT node.

hdr_qotx get_pkt_hdr ()

Retrieve the QoT header stored in the dummy_ of the QoT node.

void clearDummy ()

170

www.manharaa.com

Clear the dummy__field in the QoT node.

Private Attributes

* QoTNodex node__

Pointer to the attached QoT node.

« transport_stack tran

Pointer to the underlying transport agent.

B.43.1 Detailed Description

QoT TAM module.

B.43.2 Constructor & Destructor Documentation

B.43.2.1 TAM:TAM ()

Class constructor.

B.43.3 Member Function Documentation

B.43.3.1 void TAM::clearDummy () [i nli ne]

Clear the dummy_ field in the QoT node.

171

www.manharaa.com

B.43.3.2 hdr_qo& TAM::get_pkt hdr () [inli ne]

Retrieve the QoT header stored in the dummy_ of the QoT node.

B.43.3.3 void TAM::recv (int nbytes Packetx p)

Receive packets from the underlying transport layer.

Parameters:

nbytes The size of the received packet.

p The pointer to the received packet.

B.43.3.4 void TAM::setNode (QoTNodex nodg [i nl i ne]

Set the pointer to the attached QoT node.

B.43.3.5 void TAM::setTran (transport_stack«t) [i nli ne]

Set the pointer to the the attached transport.

B.43.3.6 transport_stack TAM::transport () [i nli ne]

Retrieve the pointer to the attached transport.

B.43.4 Member Data Documentation

172

www.manaraa.com

B.43.4.1 QoTNode TAM::node_ [pri vat e]

Pointer to the attached QoT node.

B.43.4.2 transport_stack TAM:tran [pri vat e]

Pointer to the underlying transport agent.

The documentation for this class was generated from theviioll file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

173

www.manharaa.com

B.44 throughput Struct Reference

The throughput link list item used in the statistical timer.
#i ncl ude <qot. h>

Collaboration diagram for throughput:

Public Attributes

* throughput« next

Pointer to the next item in the link list.

» double t_value

Throughput value.

* doublet

The time period that the collected data correspond to.

B.44.1 Detailed Description

The throughput link list item used in the statistical timer.

B.44.2 Member Data Documentation

B.44.2.1 throughput throughput::next

Pointer to the next item in the link list.

174

www.manharaa.com

B.44.2.2 double throughput::t

The time period that the collected data correspond to.

B.44.2.3 double throughput::t_value

Throughput value.

The documentation for this struct was generated from theviahg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

175

www.manharaa.com

B.45 trans_info Struct Reference

Structure used in QOT_TRANSPORT_QUERY_RESPONSE.
#i ncl ude <hdr. h>

Collaboration diagram for trans_info:

Public Attributes

» charx tag

Transport type.

* ns_addr_tme

Transport address and port.

* trans_infox next

B.45.1 Detailed Description

Structure used in QOT_TRANSPORT_QUERY_RESPONSE.

B.45.2 Member Data Documentation

B.45.2.1 ns_addr_ttrans_info::me

Transport address and port.

176

www.manharaa.com

B.45.2.2 trans_info: trans_info::next

B.45.2.3 chak trans_info::tag

Transport type.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thésish

177

www.manharaa.com

B.46 transport_stack Struct Reference

The protocol stack layer of a transport of a QoT node.

#i ncl ude <qot. h>

Collaboration diagram for transport_stack:

Public Attributes

charx transport_tag

Transport type tags, such as WIFI, BT, WUSB, or WUSB.

charx transport_t

Transport layer protocol type, such as TCP or UDP.

charsx routing_t

Routing layer protocol type, such as AODV or DSR.

Agentx transport_agent

The pointer to the transport layer agent.

Agentx rt_agent

The pointer to the routing layer agent.

Nodex node

The pointer to a transport of this QoT node.

got_stack stack

178

www.manharaa.com

A union that contains pointers to protocol layers that ardolethe routing layer of a

transport.

* ns_addr_tme

The address and the port number of this transport.

° transport_stack next

Linkage to the next transport of the transport link list viritla QoT node.

e transport_stack prev

Linkage to the previous transport of the transport link ligthin a QoT ndoe.

B.46.1 Detailed Description

The protocol stack layer of a transport of a QoT node.

In ns-2, the structures of transports maybe significanffedint. A union, stack, is

used to present layers that are below the routing layer.

B.46.2 Member Data Documentation

B.46.2.1 ns_addr_t transport_stack::me

The address and the port number of this transport.

B.46.2.2 transport_stack transport_stack::next

Linkage.to,the ,next transport of the transport link list with QoT node.

179

www.manaraa.com

All transports of a QoT node are linked together.

B.46.2.3 Node transport_stack::node

The pointer to a transport of this QoT node.

A transport of a QoT node is equivalent to a homogeneous modg-2.

B.46.2.4 transport_stack transport_stack::prev

Linkage to the previous transport of the transport linkwghin a QoT ndoe.

B.46.2.5 chak transport_stack::routing_t

Routing layer protocol type, such as AODV or DSR.

B.46.2.6 Agenk transport_stack::rt_agent

The pointer to the routing layer agent.

B.46.2.7 got_stack transport_stack::stack

A union that contains pointers to protocol layers that ateva¢he routing layer of

a transport.

Protocol layer structures that are below the routing layay ive significantly dif-

fernt between transports of a QoT node.

180

www.manaraa.com

B.46.2.8 Agent transport_stack::transport_agent

The pointer to the transport layer agent.

B.46.2.9 char transport_stack::transport_t

Transport layer protocol type, such as TCP or UDP.

B.46.2.10 chak transport_stack::transport_tag

Transport type tags, such as WIFI, BT, WUSB, or WUSB.

The documentation for this struct was generated from theviohg file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

181

www.manharaa.com

B.47 TransportQueryTimer Class Reference

Transport query timer.

#i ncl ude <qot. h>

Collaboration diagram for TransportQueryTimer:

Public Member Functions

TransportQueryTimer (QoTNoden)

void setStack (transport_staeg)

Set the pointer to a transport stack.

void setID (nsaddr_t i)

Set remote device ID.

void setEntry (DevTabEntrye)

Set the pointer to a Remote Device Table entry.

Protected Member Functions

* virtual void expire (Evenke)

Protected Attributes

* QoTNodex node

Pointer to the QoT node that this timer belongs to.

182

www.manharaa.com

Pointer to a transport stack.

» DevTabEntry« entry

Pointer to a Remote Device Table entry.

* nsaddr_t remote_id

Address of the remote device.

B.47.1 Detailed Description

Transport query timer.

When establishing a connection with the remote device, thsten QoT node
queries all the supported transports to find out the shaes$ports with the remote de-
vice. If the master QoT node doesn’t receive any responseaogaeried transport before

this timer expires, it marks this transport as unavailable.

B.47.2 Constructor & Destructor Documentation

B.47.2.1 TransportQueryTimer::TransportQueryTimer (Qo TNode x n)
[inline]
Parameters:

n Pointer to the QoT node that this timer belongs to.

B.47.3 Member Function Documentation

183

www.manaraa.com

B.47.3.1 virtual void TransportQueryTimer::expire (Event « €) [pr ot ect ed,

virtual]

Parameters:

e Event handler.

B.47.3.2 void TransportQueryTimer::setEntry (DevTabEntry «€) [i nli ne]

Set the pointer to a Remote Device Table entry.

B.47.3.3 void TransportQueryTimer::setID (nsaddr_ti) [i nli ne]

Set remote device ID.

B.47.3.4 void TransportQueryTimer::setStack (transport stack«s) [i nl i ne]

Set the pointer to a transport stack.

B.47.4 Member Data Documentation

B.47.4.1 DevTabEntry TransportQueryTimer::entry [pr ot ect ed]

Pointer to a Remote Device Table entry.

184

www.manharaa.com

B.47.4.2 QoTNode TransportQueryTimer::node [pr ot ect ed]

Pointer to the QoT node that this timer belongs to.

B.47.4.3 nsaddr_t TransportQueryTimer::remote_id [pr ot ect ed]

Address of the remote device.

B.47.4.4 transport_stack TransportQueryTimer::stack [prot ect ed]

Pointer to a transport stack.

The documentation for this class was generated from theviioll file:

* /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/thegith

185

www.manharaa.com

B.48 /ns-2.28/qot/hdr.h File Reference

#i ncl ude "ns-process. h"

Include dependency graph for hdr.h:

Classes

struct qot_con_req

QOT_CONNECT_REQUEST message.

» struct got_con_acc

QOT_CONNECT_ACCEPT message.

* struct qot_con_rej

QOT_CONNECT_REJECT message.

* struct qot_discon_req

QOT_DISCONNECT_REQUEST message.

* struct qot_discon_acc

QOT_DISCONNECT_ACCEPT message.

* struct qot_data_snd

QOT_DATA_SEND message.

« struct qot_data_sync_pnt

QOT_DATA_SYNC_POINT message.

186

www.manharaa.com

« struct qot_data_sync_req

QOT_DATA_SYNC_REQUEST message.

* struct qot_swh_qry

QOT_SWITCH_QUERY message.

* struct prio_info

Transport priority information.

e struct gqot_swh_qry_rep

QOT_SWITCH_QUERY_RESPONSE.

* struct qot_swh_req

QOT_SWITCH_REQUEST.

* struct qot_swh_acc

QOT_SWITCH_ACCEPT message.

* struct qot_swh_rej

QOT_SWITCH_REJECT message.

* struct gqot_rem_req

QOT_RESUME_REQUEST message.

« struct got_rem_acc

QOT_RESUME_ACCEPT messsage.

187

www.manharaa.com

* struct qot_rem_rej

QOT_RESUME_REJECT message.

« struct qot_trans_qry

QOT_TRANSPORT_QUERY message.

e struct trans_info

Structure used in QOT_TRANSPORT_QUERY_RESPONSE.

e struct qot_trans_qry_rep

QOT_TRANSPORT_QUERY_RESPONSE messge content.

* struct qot_trans_info_qry

QOT_TRANSPORT_INFO_QUERY messge content.

* struct qot_trans_info_qry_rep

QOT_TRANSPORT_INFO_QUERY_RESPONSE messge content.

e union QoTPacket

Qot packet type.

Enumerations

* enum QoTPacketType {

QOT_CONNECT _REQUEST, QOT_CONNECT_ACCEPT,
QOT_CONNECT_REJECT, QOT_DISCONNECT _REQUEST,

QOT_DISCONNECT ACCEPT, QOT_DATA_SEND,
QOT._DATA_SYNC_POINT, QOT_DATA_SYNC_REQUEST,

188

www.manaraa.com

QOT_SWITCH_QUERY, QOT_SWITCH_QUERY_RESPONSE,
QOT_SWITCH_REQUEST, QOT_SWITCH_ACCEPT,

QOT_SWITCH_REJECT, QOT_RESUME_REQUEST
QOT_RESUME_ACCEPT, QOT_RESUME_REJECT

QOT_TRANSPORT_QUERY, QOT_TRANSPORT_QUERY_RESPONSE,
QOT_TRANSPORT_INFO_QUERY, QOT_TRANSPORT_INFO_QUERESPONSE,

INVALID }

An enumeration of possible QoT states.

» enum QoTReason { INVALID_NODE, INVALID_TRANSPORT, LOW ®WER,
UNINITIALIZED }

An enumeration of possible reasons that a QoT node rejeatai@ect request.

» enum SwitchType { UPGRADE, DOWNGRADE }

Transport switching type.

» enum ApplicationType {
\VoIP, VIDEO, STREAM, MAIL,

FTP, HTTP}

Application type.

B.48.1 Enumeration Type Documentation

B.48.1.1 enum ApplicationType

Application type.

189

www.manaraa.com

Enumerator:
\VolIP

VIDEO
STREAM
MAIL
FTP

HTTP

B.48.1.2 enum QoTPacketType

An enumeration of possible QoT states.

Enumerator:
QOT_CONNECT_REQUEST

QOT_CONNECT_ACCEPT
QOT_CONNECT_REJECT
QOT_DISCONNECT_REQUEST
QOT_DISCONNECT_ACCEPT
QOT_DATA_SEND
QOT_DATA_SYNC_POINT
QOT_DATA_SYNC_REQUEST
QOT_SWITCH_QUERY
QOT_SWITCH_QUERY_RESPONSE
QOT_SWITCH_REQUEST

QOT_SWITCH_ACCEPT

190

www.manharaa.com

QOT_RESUME_REQUEST
QOT_RESUME_ACCEPT
QOT_RESUME_REJECT
QOT_TRANSPORT_QUERY
QOT_TRANSPORT_QUERY_RESPONSE
QOT_TRANSPORT_INFO_QUERY
QOT_TRANSPORT_INFO_QUERY_RESPONSE

INVALID

B.48.1.3 enum QoTReason

An enumeration of possible reasons that a QoT node rejecisreect request.

Enumerator:
INVALID_NODE

INVALID_TRANSPORT
LOW_POWER

UNINITIALIZED

B.48.1.4 enum SwitchType

Transport switching type.

Enumerator:
UPGRADE

DOWNGRADE

191

www.manharaa.com

B.49 /Users/lei/ns/ns-allinone-2.28/qot.ns-2.28/the&|ot.h File Reference

#i ncl ude <assert.h>

#i ncl ude "hdr_qot. h"

#i ncl ude "bi-connector. h"
#i ncl ude "node. h"

#i ncl ude "nobi | enode. h"
#i ncl ude "Dbt-node. h"
#include "IIl.h"

#i ncl ude "mac-tinmers. h"
#i ncl ude "object.h"

#i ncl ude "agent. h"

#i ncl ude "priqueue. h"
#i ncl ude "app. h"

Include dependency graph for got.h:

Classes

* struct stack_wifi

Pointers to transport stacks of WiFi.

* struct stack_bt

Pointers to transport stacks of Bluetooth.

* struct stack_zigbee

192

www.manharaa.com

Pointers to transport stacks of ZigBee.

* struct stack_wusb

Pointers to transport stacks of WUSB.

* union qot_stack

The union of possible transport stacks of a QoT node.

« struct transport_stack

The protocol stack layer of a transport of a QoT node.

* struct app_data

The application data that a session layer protocol sendsrdimahe QoT layer.

 struct sharedT

Shared transport between two communicating QoT nodes.

 class QoTQueue

the super class for the receive and send buffers within a QaE.n

* class QoTOutQueue

The send queue within a QoT node.

* struct act_trans_list

Active transport link list.

* class DevTabEntry

Entry in the Remote Device Table.

193

www.manharaa.com

» class RDT

Remote Device Table.

* class QoTBrain

QoT Brain.

« struct CallBack

Callback link list entry.

* class TransportQueryTimer

Transport query timer.

* struct throughput

The throughput link list item used in the statistical timer.

* struct p_consumption

The power consumption link list item used in the statistiicaér.

 class StatTimer

Statistical timer.

 class QoTNode

QoT node.

» class QTPM

QoT TPM module.

194

www.manharaa.com

class TAM

QoT TAM module.

Defines

#define QOT_BROADCAST ((u_int32._t) Oxffffffff)
#define MAX_RECV_BUFFER 100

#define BUFFER_MAX_LEN 64

#define MAXIMUM_BURST 10

#define QOT_BUFFER_TIMEOUT 30

#define QOT_PKT_LEN (512 - 3 - sizeof(qot_data_snd))
#define CONNECT_TIMEOUT 3

#define DATA_TIMEOUT 3

#define RESUME_TIMEOUT 3

#define SWITCH_TIMEOUT 3

#define QUERY_TIMEOUT 0.5

#define TRANSPORT_QUERY_TIMEOUT 2

Enumerations

enum QoTState {

QOT_READY, QOT_CONNECTING, QOT_CONNECTED,
QOT_DISCONNECTING,

QOT DISCONNECTED, QOT DATA FULL, QOT_TRANS SWITCH,
QOT_TRANS_DISC,

QOT_PRIMARY_DROPPED, QOT_SECONDARY_DROPPED }

QoT State.

195

www.manaraa.com

B.49.1 Define Documentation

B.49.1.1 #define BUFFER_MAX_LEN 64

B.49.1.2 #define CONNECT_TIMEOUT 3

B.49.1.3 #define DATA_TIMEOUT 3

B.49.1.4 #define MAX_RECV_BUFFER 100

B.49.1.5 #define MAXIMUM_BURST 10

B.49.1.6 #define QOT_BROADCAST ((u_int32_t) Oxffffffff)

B.49.1.7 #define QOT_BUFFER_TIMEOUT 30

196

www.manharaa.com

B.49.1.8 #define QOT_PKT_LEN (512 - 3 - sizeof(qot_data_shd

B.49.1.9 #define QUERY_TIMEOUT 0.5

B.49.1.10 #define RESUME_TIMEOUT 3

B.49.1.11 #define SWITCH_TIMEOUT 3

B.49.1.12 #define TRANSPORT_QUERY_TIMEOUT 2

B.49.2 Enumeration Type Documentation

B.49.2.1 enum QoTState

QoT State.

Enumeration of QoT states as described in QoT specification.

Enumerator:
QOT_READY

QOT_CONNECTING
QOT_CONNECTED

QOT_DISCONNECTING

197

www.manharaa.com

QOT_DATA_FULL
QOT_TRANS_SWITCH
QOT_TRANS_DISC
QOT_PRIMARY_DROPPED

QOT_SECONDARY_DROPPED

198

www.manharaa.com

Bibliography

[1]

[2]

[3]

M. Stemm and R. H. Katz, “Vertical handoffs in wirelesseolay networks, Mobile

Networks and Applicationsol. 4, 1999.

S.-E. Kim and J. Copeland, “Tcp for seamless verticaldadhin hybrid mobile data

networks,” inGlobal Telecommunications ConferencdEEE, 2003.

M. Baker, X. Zhao, and J. Stone, “Supporting mobility imsguitonet,” inproceed-
ings of the 1996 USENIX Technical Conference, San Diegofddaik, 1996.

[4] A. Salkintzis, C. Fors, and R. Pazhyannur, “Wlan-gptegmation for next-generation

[5]

[6]

[7]

[8]

[9]

mobile data networks,” ifVireless Communications IEEE, 2002.

M. Buddhikot, G. Chandranmenon, S. Han, Y. Lee, S. Mjl&erd L. Salgarelli, “Inte-
gration of 802.11 and third-generation wireless data netsjoin INFOCOM |IEEE,
2003.

S. G. et. al., “Demonstrating seamless handover of atap networks,” inREAL-
MAN '06: Proceedings of the second international workshapMulti-hop ad hoc
networks: from theory to reality New York, NY, USA: ACM Press, 2006.

“leee 802.21 working group, media independent handover

http://www.ieee802.0org/21.

M. G. Williams, “Directions in media independent haneoi IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications amhliter Sciences
vol. Vol.E88-A, no. 7, pp. 1772-1776, 2005.

C. D. Knutson, R. W. Woodings, S. B. Barnes, H. R. Duffindah M. Brown,

“Dynamic.autonomous transport selection in heterogenamgdess environments,”

199

www.manaraa.com

in Proceedings of the IEEE Wireless Communications and Né&tmgiConference
(WCNC) 2004.

[10] R. W. Woodings, D. Joos, T. Clifton, and C. D. Knutsonafitd heterogeneous ad
hoc connection establishment: Accelerating bluetoothinyqsing irda,” inProceed-
ings of the Third Annual IEEE Wireless Communications anvidkking Conference
(WCNC) IEEE, 2002.

[11] J. C. Funk, H. R. Duffin, L. Dai, and C. D. Knutson, “Inversultiplexing in short-
range multi-transport wireless communications,”Hroceedings of the IEEE Wire-
less Communications and Networking Conference (WCNC) Oté&ans, Louisiana
Mar. 17-19, 2003.

[12] M. P. et. al., “Ria: An rf interference avoidance algbm for heterogeneous wireless
networks,” will be submitted for WCNC 2007.

200

www.manaraa.com

	A Performance Evaluation of Dynamic Transport Switching for Multi-Transport Devices
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Department Approval Page
	University Approval Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Chapter 1
	Chapter 2
	2.1 Infrastructure-based transport switching
	2.2 Ad hoc transport switching

	Chapter 3
	Chapter 4
	4.1 Heterogeneous nodes
	4.2 Dynamic transport switching
	4.3 Modifications to TCP

	Chapter 5
	5.1 Avoiding collisions
	5.2 Avoiding interference

	Chapter 6
	6.1 Query overhead between two communicating nodes
	6.2 Query overhead from multiple communicating nodes

	Chapter 7
	Appendix A
	A.1 File layout
	A.2 Simulations with heterogeneous nodes in NS-2

	Appendix B
	B.1 Class Hierarchy
	B.2 Class List
	B.3 act_trans_list Struct Reference
	B.3.1 Detailed Description
	B.3.2 Member Data Documentation

	B.4 app_data Struct Reference
	B.4.1 Detailed Description
	B.4.2 Member Data Documentation

	B.5 CallBack Struct Reference
	B.5.1 Detailed Description
	B.5.2 Detailed Description

	B.6 DevTabEntry Class Reference
	B.6.1 Detailed Description
	B.6.2 Constructor & Destructor Documentation
	B.6.3 Member Function Documentation
	B.6.4 Friends And Related Function Documentation
	B.6.5 Member Data Documentation

	B.7 p_consumption Struct Reference
	B.7.1 Detailed Description
	B.7.2 Member Data Documentation

	B.8 prio_info Struct Reference
	B.8.1 Detailed Description
	B.8.2 Member Data Documentation

	B.9 qot_con_acc Struct Reference
	B.9.1 Detailed Description

	B.10 qot_con_rej Struct Reference
	B.10.1 Detailed Description
	B.10.2 Member Data Documentation

	B.11 qot_con_req Struct Reference
	B.11.1 Detailed Description
	B.11.2 Member Data Documentation

	B.12 qot_data_snd Struct Reference
	B.12.1 Detailed Description
	B.12.2 Member Data Documentation

	B.13 qot_data_sync_pnt Struct Reference
	B.13.1 Detailed Description
	B.13.2 Member Data Documentation

	B.14 qot_data_sync_req Struct Reference
	B.14.1 Detailed Description

	B.15 qot_discon_acc Struct Reference
	B.15.1 Detailed Description

	B.16 qot_discon_req Struct Reference
	B.16.1 Detailed Descriptoin

	B.17 qot_rem_acc Struct Reference
	B.17.1 Detailed Description
	B.17.2 Member Data Documentation

	B.18 qot_rem_rej Struct Reference
	B.18.1 Detailed Description

	B.19 qot_rem_req Struct Reference
	B.19.1 Detailed Description
	B.19.2 Member Data Documentation

	B.20 qot_stack Union Reference
	B.20.1 Detailed Description
	B.20.2 Member Data Documentation

	B.21 qot_swh_acc Struct Reference
	B.21.1 Detailed Description
	B.21.2 Member Data Documentation

	B.22 qot_swh_qry Struct Reference
	B.22.1 Detailed Description
	B.22.2 Member Data Documentation

	B.23 qot_swh_qry_rep Struct Reference
	B.23.1 Detailed Descriptoin
	B.23.2 Member Data Documentation

	B.24 qot_swh_rej Struct Reference
	B.24.1 Detailed Description
	B.24.2 Member Data Documentation

	B.25 qot_swh_req Struct Reference
	B.25.1 Detailed Description
	B.25.2 Member Data Documentation

	B.26 qot_trans_info_qry Struct Reference
	B.26.1 Detailed Description
	B.26.2 Member Data Documentation

	B.27 qot_trans_info_rep Struct Reference
	B.27.1 Detailed Description
	B.27.2 Member Data Documentation

	B.28 qot_rans_qry Struct Reference
	B.28.1 Detailed Description

	B.29 qot_trans_qry_rep Struct Reference
	B.29.1 Detailed Description
	B.29.2 Member Data Documentation

	B.30 QoTBrain Class Reference
	B.30.1 Detailed Description
	B.30.2 Constructor & Destructor Documentation
	B.30.3 Member Function Documentation
	B.30.4 Member Data Documentation

	B.31 QoTNode Class Reference
	B.31.1 Detailed Description
	B.31.2 Constructor & Destructor Documentation
	B.31.3 Member Function Documentation
	B.31.4 Friends And Related Function Documentation
	B.31.5 Member Data Documentation

	B.32 QoTOutQueue Class Reference
	B.32.1 Detailed Description
	B.32.2 Constructor & Destructor Documentation
	B.32.3 Member Function Documentation
	B.32.4 Friends And Related Function Documentation
	B.32.5 Member Data Documentation

	B.33 QoTPacket Union Reference
	B.33.1 Detailed Description
	B.33.2 Member Data Documentation

	B.34 QoTQueue Class Reference
	B.34.1 Detailed Description
	B.34.2 Constructor & Destructor Documentation
	B.34.3 Member Function Documentation
	B.34.4 Member Data Documentation

	B.35 QTPM Class Reference
	B.35.1 Detailed Description
	B.35.2 Constructor & Destructor Documentation
	B.35.3 Member Function Documentation
	B.35.4 Member Data Documentation

	B.36 RDT Class Reference
	B.36.1 Detailed Description
	B.36.2 Constructor & Destructor Documentation
	B.36.3 Member Function Documentation
	B.36.4 Friends And Related Function Documentation
	B.36.5 Member Data Documentation

	B.37 sharedT Struct Reference
	B.37.1 Detailed Description
	B.37.2 Member Function Documentation
	B.37.3 Member Data Documentation

	B.38 stack_bt Struct Reference
	B.38.1 Detailed Description
	B.38.2 Member Data Documentation

	B.39 stack_wifi Struct Reference
	B.39.1 Detailed Reference
	B.39.2 Member Data Documentation

	B.40 stack_wusb Struct Reference
	B.40.1 Detailed Description
	B.40.2 Member Data Documentation

	B.41 stack_zigbee Struct Reference
	B.41.1 Detailed Description
	B.41.2 Member Data Documentation

	B.42 StatTimer Class Reference
	B.42.1 Detailed Description
	B.42.2 Constructor & Destructor Documentation
	B.42.3 Member Function Documentation
	B.42.4 Friends And Related Function Documentation
	B.42.5 Member Data Documentation

	B.43 TAM Class Reference
	B.43.1 Detailed Description
	B.43.2 Constructor & Destructor Documentation
	B.43.3 Member Function Documentation
	B.43.4 Member Data Documentation

	B.44 throughput Struct Reference
	B.44.1 Detailed Description
	B.44.2 Member Data Documentation

	B.45 trans_info Struct Reference
	B.45.1 Detailed Description
	B.45.2 Member Data Documentation

	B.46 transport_stack Struct Reference
	B.46.1 Detailed Description
	B.46.2 Member Data Documentation

	B.47 TransportQueryTimer Class Reference
	B.47.1 Detailed Description
	B.47.2 Constructor & Destructor Documentation
	B.47.3 Member Function Documentation
	B.47.4 Member Data Documentation

	B.48 /ns-2.28/qot/hdr.h File Reference
	B.48.1 Enumeration Type Documentation

	B.49 /Users/lei/ns-allinone-2.28/thesis/qot.h File Reference
	B.49.1 Define Documentation
	B.49.2 Enumeration Type Documentation

	Bibliography

